Содержание статьи
С учителем и без него: как обучаются нейросети
С учителем
Метод обучения с учителем ( supervised learning) аналогичен получению знаний в школе, где нейросеть выступает в качестве ученика, а человек — в роли преподавателя. Роль учителя заключается в том, чтобы подать на вход модели исходные данные и их «расшифровку » . По аналогии с математическими задачами это будет «вопрос » и «правильный «ответ » (метка). Например, при обучении задаче классификации изображений каждой отдельной картинке будет присвоена метка, означающая класс изображения (например, кошка или собака на фото). Так происходит настройка параметров для минимизации ошибок между собственными предположениями и « правильными ответами» (метками). Сопоставляя их из раза в раз, нейронная сеть б удет самос тоятельно обучаться отвечать и на последующие запросы правильно уже без помощи человека.
Все нейронные сети решают разные задачи, и поэтому тренировать их нужно тоже по-разному. В зависимости от будущего функционала, наличия ресурсов и времени выбирайте подходящий формат обучения — и спустя время получите наученную решению именно ваших задач ИИ-модель.
Есть множество методов «тренировки» нейронных сетей, но все они основываются на двух ключевых принципах: с помощью учителя и без него. Это происходит точно так же, как и у человека: можно приобретать новые знания под руководством наставника, который подскажет и скорректирует отдельные моменты, а можно заниматься самообразованием. В последнем случае человек опирается только на свой личный опыт и наблюдения.
При этом нередки ситуации, в которых модели необходима хотя бы частичная «разметка» данных для результативной работы. В этом случае потребуется частичное привлечение учителя: он заранее размечает часть данных самостоятельно , а остальные подаются модели в неразмеченном виде. Этот вариант не только повышает эффективность «тренировок» модели, но и значительно ускоряет их.
Главная проблема такого формата обучения — необходимость сбора и обработки огромных массивов информации на соответствующих высоких мощностях. Это длительный, дорогостоящий и технически сложный процесс, позволить себе который могут только крупные компании, не говоря уже о частных лицах. Кроме того, обучение с учителем подходит далеко не для всех типов данных. Оно предполагает, что в дальнейшем система будет работать только с информацией, аналогичной обучающему датасету, иначе эффективность ее функционирования точно предсказать невозможно.
Обучение нейронной сети — это процесс, в ходе которого модель искусственного интеллекта (в данном случае нейронная сеть) учится выполнять определенные задачи на основе предоставленных ей данных. Это может быть, например, распознавание образов или предсказание тенденций.
Простые и глубокие нейронные сети: баланс между сложностью и производительностью
Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).
Современные нейросети с легкостью и за считанные секунды анализируют художественный текст, создают изображения, поддерживают живой диалог, пишут программный код и многое другое по запросу пользователя. Однако для того, чтобы эти действия правильно и быстро выполнялись, нейронная сеть проходит трудоемкое обучение, вне зависимости от размера входной задачи и количества нейронов в сети. Для результативной работы модели в будущем необходимо заранее подготовить наборы обучающих данных, рассчитать возможные отклонения от точных решений и подобрать весовые коэффициенты для каждого из нейронов.
Нейросети , прошедшие обучение без учителя, не хуже предыдущих решают задачи кластеризации. Деление большого количества данных на группы способна совершить каждая обучающаяся модель, а далее с уже первично отсортированными сведениями могут работать люди или более тонко настроенные модели. Помимо задач группировки, нейронные сети умеют определять связи в данных. Этот механизм часто используется в маркетинге: анализируя историю покупок, искусственный интеллект предполагает, какие товары и услуги дополнительно предложить этому же человеку. Детектирование аномалий — еще одна профильная задача самостоятельного машинного обучения, решаемая автокодировщиком Autoencoder.
Прохождение игр — часто встречающаяся задача, которую решает обучение с подкреплением. Так, например, алгоритм Q-обучения (Q-learning) часто используется в играх — например, для тренировки агента прохождению знакомой всем «Змейки » . Другой пример — нейросетевая модель AlphaGo, которая обучена играть в го на уровне мировых чемпионов.
Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?
Обучение с учителем (Supervised Learning) — это наиболее распространенный подход, при котором нейросеть обучается на основе предварительно размеченных данных. Эти данные включают в себя входные значения и соответствующие им целевые (ответы). Нейросеть обучается предсказывать последние на основе входных данных.
Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.
Для того чтобы обучение с подкреплением было результативно, важно пройти много предварительных тренировок. Долгий период развития навыков модели и необходимость большого количества примеров называют главными минусами этого формата. Если в будущей работе нейросеть столкнется с незнакомой ситуацией, то реакция будет непредсказуема.