Какой искусственный интеллект

0
23

Искусственный интеллект: Что это такое, как он работает и почему он важен

Обучение и развитие моделей ИИ

ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям

Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.

ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.

Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.

Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.

Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.

Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .

Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.

Основы теории: Что такое искусственный интеллект?

Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.

Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.

Искусственный интеллект может применяться как в качестве партнёра в играх (например, шахматах), так и в более серьёзных задачах. Например, с 1990-х годов ИИ используется для распознания речи, что повышает удобство различных сервисов. Способен искусственный интеллект и распознавать живую речь, для чего недостаточно просто распознавать отдельные слова. Ещё один вариант использования — компьютерное зрение. Мир, в котором мы находимся имеет три измерения, в то время как устройства ввода визуальной информации, что у человека, что у машины, воспринимают только двухмерную картинку. Задача ИИ в данном случае — обработать имеющееся изображение для распознания объектов на нём. Также ИИ используются для так называемых «экспертных систем» — систем анализа данных в определённой сфере знаний или деятельности, действующей эффективнее, чем человек за счёт высокой скорости обработки [3] [7] [8] .

ЧИТАТЬ ТАКЖЕ:  Как понять искусственный интеллект

Появление решений и средств на основе ИИ означает, что все больше компаний могут воспользоваться преимуществами этой технологии для экономии средств и времени. Готовые решения, средства и ПО на основе ИИ включают в себя встроенные средства ИИ или помогают автоматизировать процесс принятия решений на основе алгоритмов.

Искусственный интеллект — это наука и технология создания интеллектуальных машин, в первую очередь интеллектуальных компьютерных программ. Интеллект в данном случае — это вычислительная способность достигать целей в мире, присущая человеку, многим животным и некоторым машинам. При этом до сих пор в научном сообществе нет чёткого понимания, какие вычислительные функции считать интеллектом в силу понимания только части из них; по этой причине точного общепринятого определения интеллекта, не завязанного на интеллект человека, не существует. Также из-за того, что интеллект — это сложное понятие, состоящее из множества свойств и функций, некоторые из которых до сих пор не поддаются вычислительным машинам, невозможно чётко отделить «интеллектуальные» машины от «не интеллектуальных»; многие из вычислительных систем, созданных для выполнения той или иной функции можно назвать «в какой-то мере интеллектуальными» [1] .

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Как создать правильную культуру

ИИ является стратегической необходимостью для любой компании, которая хочет повысить производительность, открыть новые возможности для получения прибыли и укрепить лояльность заказчиков. Эта технология уже помогла многим компаниям добиться конкурентного преимущества. Благодаря ИИ можно делать больше за меньшие сроки, обеспечивать эффективное персонализированное обслуживание и прогнозировать результаты, а значит — получать большую прибыль.

Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.

Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .

Использование чат-ботов для общения с покупателями. Чат-боты используют лингвистическую обработку, чтобы анализировать вопросы покупателей и предоставлять ответы и информацию. Чат-боты умеют обучаться и со временем начинают приносить все большие преимущества.

Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .

Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

ИИ становится неотъемлемой частью бизнеса. Рано или поздно все компании вынуждены будут использовать технологии ИИ, чтобы создать собственную экосистему и сохранить конкурентоспособность. Те, кто пренебрегает прогрессом, в следующие 10 лет рискуют остаться за бортом.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь