Содержание статьи
С учителем и без него: как обучаются нейросети
Как обучаются нейросети
Прохождение игр — часто встречающаяся задача, которую решает обучение с подкреплением. Так, например, алгоритм Q-обучения (Q-learning) часто используется в играх — например, для тренировки агента прохождению знакомой всем «Змейки » . Другой пример — нейросетевая модель AlphaGo, которая обучена играть в го на уровне мировых чемпионов.
Отсутствие контроля человека при тренировке моделей увеличивает вероятность ошибок. Самостоятельный анализ данных может привести к неверному объединению или группировке по тем признакам, которые не важны для человека. Кроме того, подобная подготовка требует большего количества времени и информации — ведь для того, чтобы без подсказок учителя сделать верные выводы, нужно проанализировать больший объем информации, чем с ними.
Искусственные нейронные сети окружают нас повсюду: Алиса расскажет погоду на день, навигатор построит быстрый маршрут до работы, а умная лента покажет подборку новостей по интересам. Благодаря нейросетям любой желающий может почувствовать себя большим художником или писателем, даже если не умеет рисовать и красиво выражать мысли. Тем не менее для многих они по-прежнему остаются загадкой. Как и словосочетание Big Data, о котором мы уже как-то рассказывали.
Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).
Нейросети значительно упростили нашу жизнь. Вероятно, к ним и нужно относиться как к ассистентам. Например, наш Мегаплан может взять на себя постановку задач по шаблонам или планирование дел по расписанию. Но для этого нужны настройки, которые никто, кроме человека, не сделает. Так что отдаем нейросетям рутину и освобождаем время для более творческих и интересных видов деятельности!
Специалисты Института трансляционной аналитики данных (TDAI) в Университете штата Огайо разработали платформу Wildbook, которая помогает исследователям и защитникам природы находить и сохранять редкие виды животных. Чтобы это стало возможным, ученые обучили нейронные сети распознавать изображения тех, кому угрожает опасность. Машина видит фотографию кита, косатки или леопарда и узнает животное, опираясь на текстуру и окраску его шерсти, линию плавника или хвоста. Система обучается с помощью образцов, помеченных вручную.
Алгоритмы обучения нейронных сетей
Машинное обучение и нейронные сети связаны между собой, однако это все же разные области искусственного интеллекта. В первом случае речь идет о широком термине, который означает использование алгоритмов для анализа данных, обучения на их основе и прогнозирования или принятия решений. Здесь могут использоваться разные способы: статистические методы, деревья решений и т. д.
Нейронные сети используются почти во всех голосовых приложениях. При этом они научились распознавать речь не только взрослых, но и детей, у которых она не всегда внятная, а также людей с акцентами и необычными голосами. Но недостаточно просто расшифровать звук — виртуальный помощник должен еще правильно понять его смысл. Для Алексы, например, инженеры Amazon определили около 80 различных намерений: позвонить кому-нибудь, воспроизвести музыку, дать информацию о пробках на дороге, выбрать радиостанцию. Как только помощник распознает намерение, сервер Amazon сможет выполнить запрошенную задачу.
Существуют полуавтономные и автономные системы помощи водителям, в которых применяются нейросети. Первые уже часто используются в автомобилях: система определяет, где можно ехать, а где есть препятствие, может удерживать курс и ускоряться. Нейросеть умеет различать другие автомобили, пешеходов, велосипедистов. Например, такой системой оснащены автомобили Tesla. Но рядом всегда должен быть человек, который в случае ошибки может взять управление на себя. Системы для полностью автономного вождения, когда автопилот работает без внешнего контроля, пока не изобрели.
Нейросети меняют общество и экономику. Как и любая технологическая революция, они способствуют появлению новых профессий и уничтожению старых. Многие специалисты со временем могут оказаться ненужными, их заменят роботы. Это пугает, но дальновидные экономисты, которые специализируются на вопросах влияния технологий на экономику, настроены оптимистично.
При этом обучение с подкреплением рассчитано не только на успешное прохождение игр. Нейросети , подготовленные к самостоятельной работе таким способом, могут в дальнейшем управлять транспортом в качестве автопилота или выступать техподдержкой, получая положительную обратную связь за каждый верно решенный запрос.
Например, чтобы научить машину отличать корабли от самолетов, нужно сначала собрать тысячи фотографий тех и других и загрузить их в нейросеть. Затем показать ей изображение корабля. Если машина дает правильный ответ — ничего менять не нужно. Если машина дает неверный ответ, то необходимо настроить параметры системы так, чтобы ее ответ приблизился к правильному.
Чтобы обучить нейронную сеть различать изображения, сотрудники Google собрали миллионы картинок и пометили их вручную. Когда Google, чтобы отсеять ботов, в следующий раз попросит вас «щелкнуть каждое изображение, содержащее стрекозу» и вы это сделаете, знайте, что вы тоже внесете вклад в обучение нейросетей. В среде айтишников даже ходит такая шутка: когда роботы научатся ставить галочку в капчах и проходить этот квест, тогда и начнется восстание машин.
Как и человек, нейросеть учится за счет изменения связей между нейронами. Проще всего отследить этот процесс на примере моллюска аплизии. У него очень простая нервная система, которая управляет внешними жабрами. Если прикоснуться к жабрам, то моллюск сначала их втянет, а потом спустя время выпустит. Если повторять касания жабр из раза в раз, постепенно моллюск начнет выпускать их быстрее, а потом и вовсе перестанет втягивать. Так нейронные связи адаптируются к внешним раздражителям, то есть обучаются.
Для чего необходимо обучать нейросети
Существует много способов обучения нейросетей. Большинство из них состоят из двух этапов: поиск основного правила и отладка. На первом этапе нейросети показывают миллиарды картинок и говорят, что на них изображено. Машина находит отличительные черты разных предметов и вырабатывает собственный алгоритм, как их различать. На втором этапе проверяют, может ли нейросеть правильно назвать картинки, которых она еще не видела. Если машина ошибается, оператор ей об этом сообщает. Тогда нейросеть перенастраивает свои внутренние связи, чтобы в следующий раз дать правильный ответ.
Все нейронные сети решают разные задачи, и поэтому тренировать их нужно тоже по-разному. В зависимости от будущего функционала, наличия ресурсов и времени выбирайте подходящий формат обучения — и спустя время получите наученную решению именно ваших задач ИИ-модель.
Аналогично чтобы построить автомобиль, который может ездить самостоятельно, сначала нужно собрать данные от опытного водителя. Для этого каждую долю секунды надо записывают положение автомобиля на дороге и то, как водитель поворачивает руль, чтобы машина оставалась в пределах полосы. В результате за час наблюдений ученые получают 36 000 положений автомобиля и углов поворота руля. На этой информации нейросеть потом учится.
В эпоху информационных технологий и научных открытий для решения сложных задач все чаще применяется искусственный интеллект. Среди множества его инструментов и методов особое место занимают нейронные сети — интеллектуальные роботы, имитирующие работу человеческого мозга. Однако для того чтобы нейросети смогли решать сложные задачи, их сначала необходимо обучить.
Первую обучающуюся машину создал в 1957 году американский психолог Фрэнк Розенблатт в авиационной лаборатории Корнеллского университета в Буффало, США. Ученый вдохновился работой нейронов в человеческом мозге и по аналогии сделал искусственную нейросеть, которую назвал перцептрон.
Нейросети могут прогнозировать спрос на разные продукты и предсказывать изменение цен акций. Например, они помогают французской государственной энергетической компании EDF прогнозировать потребление энергии. С этими знаниями компания эффективнее управляет производительностью электростанций и распределяет ресурсы с минимальными потерями. В маркетинге нейросети используются для изучения интереса людей к тому или иному контенту:к примеру, подскажут, на какой рекламный баннер будут реагировать чаще.
Нейронные сети используются в аппаратах для рентгена, магнитно-резонансной и компьютерной томографии (МРТ и КТ) для обнаружения опухолей, а еще в ревматологии и при протезировании. Они снижают стоимость диагностики и затраты времени на нее, помогая врачу не пропустить опухоль, сосредоточить внимание на сложных случаях.
Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?