Как создают искусственный интеллект

0
48

Как создать искусственный интеллект: все, что нужно знать

Развернуть
Если вы успешно построили и обучили свою модель, пришло время ее развертывания. Разумеется, необходимо следить за ее работой, чтобы убедиться, что она соответствует ожиданиям. Вероятно, со временем потребуется дополнительное обучение для повышения точности и производительности модели искусственного интеллекта.

Искусственный интеллект (ИИ) уже способен создавать высокореалистичное видео по голосовому запросу, общаться так, что его сложно отличить от человека, предсказывать поломки оборудования и находить оптимальные маршруты для доставки товаров из одной точки мира в другую. При этом в научной классификации современный ИИ, базирующийся на нейросетевых технологиях и машинном обучении, вполне официально называется «Слабым ИИ».

Искусственный сверхинтеллект
Если искусственный интеллект общего назначения был лишь гипотетическим, то системы сверхинтеллекта — еще более гипотетическими. Теоретически искусственный сверхинтеллект должен превосходить человеческий во всех возможных аспектах.

Получение данных
После определения проблемы, которую необходимо решить, следующим шагом будет получение обучающих данных. Получить качественные данные проще, чем внести улучшения в модель ИИ. Независимо от того, структурированные или неструктурированные данные у вас есть, после сбора обучающих данных их необходимо очистить.

Однако такой оценочный термин говорит не о скромных возможностях актуальных ИИ-решений, а об огромном потенциале того, что называют «Общим искусственным интеллектом». Границы его возможностей пока не видят даже самые смелые визионеры. Во многом это связано с тем, что само понятие «Общий искусственный интеллект», в международной терминологии Artificial General Intelligence (AGI) окончательно не сформировалось. Пока ни ведущие международные, ни российские эксперты и ученые не могу дать единого определения AGI. Более того, даже стратегия и тактика движения в сторону AGI у разработчиков, компаний и исследователей ИИ разная. Соучредитель и генеральный директор компании Anthropic Дарио Амодей считает, что масштабирование уже существующих ИИ-систем рано или поздно приведет к переходу количества в качество. Схожей позиции придерживаются и Сэм Альтман и Илья Суцкевер из OpenAI (мирового лидера в области ИИ).

Знаменитый французский ученый в области машинного обучения, компьютерного зрения и вычислительной нейробиологии Ян Лекун считает, что разработка AGI должна фокусироваться на способности ИИ не просто выполнять сформулированную человеком задачу, а самостоятельно достигать поставленной перед ним цели. Схожую точку зрения, выступая на форуме «Открытые инновации», высказал и руководитель центра прикладного искусственного интеллекта «Сколтеха» и ведущий научный сотрудник института искусственного интеллекта (AIRI) Евгений Бурнаев. «Над определением, что такое AGI, сломалась не одна тысяча копий. Я предпочитаю отталкиваться от способа решения сложных инженерных задач. Обычно они решаются так: большая задача декомпозируется на множество небольших, и человек, используя различные инструменты, последовательно решает их одну за другой, приближаясь решению общей. А хотелось бы так — есть, например, какая-то сложная задача по проектированию, человек ставит перед ИИ высокоуровневую цель, и машина самостоятельно или взаимодействуя с человеком достигает ее и получает результат, который человека удовлетворяет. Речь идет о создании так называемых когнитивных архитектур. Вероятно, такой ИИ можно будет назвать общим», — считает Бурнаев. Вместе с тем, любая разработка ИИ требует больших вычислительных мощностей, и недавно сторонник увеличения размера нейросетей и глава OpenAI Сэм Альтман заявил, что миру нужно больше вычислительной инфраструктуры для искусственного интеллекта. То есть, больше мощностей, больше энергии, больше центров обработки данных. Более того, по его мнению, нужно построить фабрики, специально предназначенные для производства чипов для работы с ИИ. Такой проект Альтман оценил в 5-7 трлн долларов и начал искать инвесторов для этого проекта. Эта сумма в 12-18 раз больше доходной части бюджета РФ в 2024 году. И независимо от того, найдет Альтман эти деньги или нет, такие инвестиции в «железо», какие делают OpenAI, Microsoft, Google, и другие BigTech гиганты, в России не может себе позволить ни бизнес, ни госструктуры.

ЧИТАТЬ ТАКЖЕ:  Чем опасен искусственный интеллект

Фреймворки также предлагают шаблоны и руководства, которые помогут вашей команде создавать нейронные сети и другие прогностические модели. Scikit, Pytorch и Tensorflow — наиболее популярные фреймворки и библиотеки для разработки моделей машинного обучения.

Написание алгоритмов
Алгоритмы — это математические инструкции, которые указывают системе искусственного интеллекта, что делать и как улучшить ее работу. Суть ИИ-решения заключается в алгоритмах, на которых оно основано. Выбрав язык программирования и платформу, вы можете написать свои собственные алгоритмы.

Мы уже объясняли, что общий и сверхинтеллект — это всего лишь гипотезы, когда речь идет об искусственном интеллекте. Как следствие, ваш ИИ должен будет что-то делать. Прежде чем приступать к написанию и проектированию алгоритмов машинного обучения, необходимо решить, что будет делать ваш ИИ.

В этой статье мы рассмотрим, что потребуется вашей компании для создания системы искусственного интеллекта. Однако прежде чем мы расскажем о том, как создать ИИ, необходимо разобраться в различных типах искусственного интеллекта. Кроме того, существуют различные уровни возможностей искусственного интеллекта, которые следует учитывать перед началом работы с ним.

Например, если вы хотите создать ИИ для видеоигр, то лучшим вариантом будет C++. Если же вы хотите построить модели глубокого обучения для прогностического анализа, то лучше использовать R. Кроме того, Python является гибким и наиболее удобным для начинающих языком программирования для задач ИИ.

Определение проблемы
Первым шагом в разработке программного обеспечения с искусственным интеллектом является определение проблемы или задачи, которую он может решить. Например, ChatGPT помогает людям писать контент, а Dall-E — создавать уникальные изображения. Какую задачу будет решать ваш искусственный интеллект?

Теперь, когда вы больше знаете о том, что такое искусственный интеллект и каковы его возможности, полезно понять, какие этапы включает в себя создание решения на основе искусственного интеллекта.
Важнейшими этапами создания искусственного интеллекта являются следующие:

В настоящее время существует несколько моделей ИИ, в том числе популярная ChatGPT, которая стала одной из ключевых систем ИИ, вызвавших интерес общественности и компаний к технологиям ИИ. Однако использование готовой системы искусственного интеллекта, подобной ChatGPT, может оказаться не самым эффективным решением для удовлетворения уникальных потребностей вашей организации.

Искусственный общий интеллект
Искусственный интеллект общего назначения также называют сильным ИИ. Система сильного ИИ может выполнить любую интеллектуальную задачу, которая под силу человеку. Сильные системы ИИ являются лишь гипотетическими. Ни один искусственный интеллект не способен сравниться с человеком по уровню интеллекта и умению решать задачи.

Искусственный узкий интеллект
Искусственный узкий интеллект также называют слабым ИИ. Система слабого ИИ предназначена для выполнения конкретной задачи. Например, искусственным узким интеллектом считается система ИИ, созданная для обработки естественного языка, игры в шахматы, перевода языка, распознавания лиц, речи и т.д.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь