Содержание статьи
Предпосылки становления и этапы развития технологии искусственного интеллекта Текст научной статьи по специальности «Математика»
Текст научной работы на тему «Предпосылки становления и этапы развития технологии искусственного интеллекта»
В работах У. Маккалоха и У. Питтса была также озвучена теория о том, что сетевая структура искусственной нейронной сети может быть способна к обучению и тем самым увеличению своей эффективности без изменения количества структурных компонентов. У. Хебб развивая данную идею, продемонстрировал в 1949 г. в своей монографии модель обучения искусственной нейронной сети на основе принципа иерархичности как самих искусственных нейроной, так и объединений (ассамблей) искусственных нейронных сетей -Ш1.
В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.
ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.
количество последних достаточно велико. Сетевая (коннекционистская) модель, получившая закрепление в рассматриваемой технологии, предполагает, что интеллект -это возникающее, а не имманентное качество; «высокоуровневые задачи, например, распознавание шаблонов и установление связей между ними, проявляется автоматически в результате распространения активности по сети посредством
Байесовский подход предполагает, что обучение — это интерпретация вероятностей. При этом вероятность рассматриваются не с точки зрения частотности, предполагающей наличие объективных случайностей, а как мера нашего знания о чём-либо. Частотный подход предлагает опору при прогнозировании исключительно на ранее собранную статистику. К примеру, в метеорологии он может быть использован при предсказании температуры воздуха. Байесовский подход предполагает распределение вероятностей возможных температур воздуха, с учётом динамически изменяющихся факторов. В байесовской модели используется переход от априорной к апостериорной вероятности и обратно. Наиболее распространённым примером использования байесовского подхода к искусственному интеллекту является выявление спама в электронных сообщениях и определения источников недостоверных сообщений (фейк-ньюз).
имитацию» [8, с’ 56-581. Участниками этого эксперимента являются три человека: мужчина (А), женщина (В) и лицо, задающее вопросы (С). С отделён от других участников. Цель игры в имитацию состоит в том, чтобы С, задавая вопросы А и В, постарался определить, кто из них является мужчиной, а кто женщиной. Тьюринг предложил заменить в этой системе А или В машиной; в этом случае С уже должен определить, кто из других участников является человеком, а кто машиной. Этот эксперимент получил название теста Тьюринга и к настоящему времени используется для прогнозирования появления антропоморфного (по своим функциональным признакам) искусственного интеллекта.
Влияние на различные области
один из разработчиков современных научных основ машинного обучения Р. Саттон указывает, что одной из главных проблем при разработке систем искусственного интеллекта является то, что их разработчики пытаются смоделировать человеческое мышление, в том числе как механически воспроизвести физическую топографию человеческого мозга, в то время как агенты (системы) искусственного интеллекта должны уметь совершить открытия, а не просто понимать содержание того, что открыл
Некоторые ученые отмечают риски внедрения ИИ в повседневную жизнь. Так, британский ученый Стивен Хокинг считал, что создать ИИ, превосходящий человека по всем параметрам, все же удастся, но справиться с ним будет нам не под силу, и людям будет нанесен существенный вред. Илон Маск же считает, что искусственный разум в дальнейшем будет нести куда большую угрозу по сравнении с ядерным оружием.
юридических наук технологии искусственного интеллекта состоит в том, что данная технология может выступить не только объектом правового регулирования, но также и методом познавательной деятельности, как в юридической практике, так и при проведении отраслевых теоретических исследований.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
3. Возможность исследования искусственного интеллекта с разных позиций, как с точки зрения отдельных научных дисциплин, так и с позиций отдельных аспектов восприятия данной технологии. Так, помимо описанного выше коннекционистского подхода, с позиций которого было изложено развитие искусственного интеллекта, следует
В 1955 г. будущий нобелевский лауреат А. Ньюэлл, Х. А. Саймон и Дж. С. Шоу создали компьютерную программу «Logic Theorist» («Теоретик логики»). С помощью этой программы удалось решить 38 из 52 теорем Б. Рассела, для некоторых из которых были найдены новые, более оптимальные решения. Именно в обсуждении этой программы впервые прозвучал термин «сильный искусственный интеллект» — техническое устройство, по своим характеристикам и возможностям не уступающее человеческому разуму.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
Объектом исследования является технология искусственного интеллекта . Предметом исследования выступают закономерности и факторы становления и развития данной технологии. Философские предпосылки были заложены в классических научных работах, однако фундаментом становления рассматриваемой технологии нужно считать исследования в области нейрофизиологии и теории вычислительной техники . В XX веке, с развитием компьютерной техники, данная технология получила импульс к развитию, что к настоящему времени привело к её широкому распространению и обусловило интерес к ней социо-гуманитарных наук, в первую очередь, юриспруденции и этики. В основе исследования лежат системный и историографический методы, благодаря которым была осуществлена систематизация научных источников. Также были использованы общенаучные логические методы (анализ, синтез, индукция) в целях выделения и обобщения закономерностей и факторов развития рассматриваемой технологии. В результате исследования были сформулированы следующие выводы. Методологической основой современных технологий искусственного интеллекта является теория нервной системы, по аналогии с которой конструируются системы искусственного интеллекта на базе искусственных нейронных сетей. Процесс становления и развития данной технологии был расчленён на 5 этапов. К факторам, обеспечившим широкое распространение систем искусственного интеллекта к настоящему времени, относятся: возможность моделирования процессов человеческого мышления; возможность сбора и обработки больших данных ; междисциплинарный и многоаспектный характеры научных исследований данной технологии.