Нейросеть кто создал

0
22

Крестный отец нейросетей» уволился из Google

Краткая история Джеффри Хинтона

Джеффри Хинтон, которого называют «Крестным отцом ИИ», рассказал The New York Times, что люди уже начали сталкиваться с негативными последствиями деятельности нейросетей. Это, например, потеря рабочих мест, когда работодатели поручают ИИ часть обязанностей увольняемых рабочих. Например, в Баварии на заводе BMW нейросети и роботы уже контролируют качество покраски кузовов автомобилей, а немногочисленные проверяющие люди лишь подстраховывают их. В результате подобных шагов работы лишатся миллионы людей во всем мире, уверен Хинтон и ряд других экспертов.

Иначе говоря, мы минимизируем суммарное отклонение наших ответов от правильных, но только в неправильную сторону; верный ответ ничего не вносит в функцию ошибки. Умножение на [math]y(x)[/math] здесь нужно для того, чтобы знак произведения всегда получался отрицательным: если правильный ответ −1, значит, перцептрон выдал положительное число (иначе бы ответ был верным), и наоборот. В результате у нас получилась кусочно-линейная функция, дифференцируемая почти везде, а этого вполне достаточно.

Сегодня мы бросим взгляд на историю создания нейросетей и проследим их путь к современному состоянию. Это важно не только для специалистов в области искусственного интеллекта и компьютерных наук, но и для всех интересующихся, кто придумал нейросеть и какие выдающиеся умы лежат в основе технологий, ставших частью нашей жизни.

Хорошим примером биологической нейронной сети является человеческий мозг. Наш мозг — сложнейшая биологическая нейронная сеть, которая принимает информацию от органов чувств и каким-то образом ее обрабатывает (узнавание лиц, возникновение ощущений и т.д.). Мозг же, в свою очередь, состоит из нейронов, взаимодействующих между собой.

Однослойный персептрон (англ. Single-layer perceptron) — перцептрон, каждый S-элемент которого однозначно соответствует одному А-элементу, S-A связи всегда имеют вес 1, а порог любого А-элемента равен 1. Часть однослойного персептрона соответствует модели искусственного нейрона.

В основе перцептрона лежит математическая модель восприятия информации мозгом. Разные исследователи по-разному его определяют. В самом общем своем виде (как его описывал Розенблатт) он представляет систему из элементов трех разных типов: сенсоров, ассоциативных элементов и реагирующих элементов.

Примеры кода

В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Midjourney – это своего рода социальная сеть, где пользователи могут создавать и делиться уникальными произведениями искусства, сгенерированными по запросу нейросетью. Основное отличие Midjourney от похожих проектов DALL-E 2 от OpenAI заключается в том, что к боту можно получить доступ через интернет-протокол передачи голоса, социальную платформу мгновенных сообщений Discord, а не через сайт или мобильное приложение.

Для построения искусственной нейронной сети будем использовать ту же структуру. Как и биологическая нейронная сеть, искусственная состоит из нейронов, взаимодействующих между собой, однако представляет собой упрощенную модель. Так, например, искусственный нейрон, из которых состоит ИНС, имеет намного более простую структуру: у него есть несколько входов, на которых он принимает различные сигналы, преобразует их и передает другим нейронам. Другими словами, искусственный нейрон — это такая функция [math]\mathbb^n \rightarrow \mathbb[/math] , которая преобразует несколько входных параметров в один выходной.

Хольц получил степень доктора философии и начал свою карьеру как консультант НАСА и Института Макса Планка. Математические открытия и научные исследования молодого ученого привели к созданию Leap – одной из самых мощных в мире технологий трехмерного управления движением. На момент значимых открытий в сфере высоких технологий Дэвид Хольцу был всего 24 года.

Кроме того, проект отличается собственным стилем и созданием более качественных изображений высокого уровня детализации, реализма и креативности с использованием текстовых подсказок. Проект стал возможным благодаря обучению модели искусственного интеллекта на огромных объемах данных и изображений.

Само обучение нейронной сети можно разделить на два подхода: обучение с учителем [на 28.01.19 не создан] и обучение без учителя [на 28.01.19 не создан] . В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.

ЧИТАТЬ ТАКЖЕ:  Как создать нейросеть чат бота

ChatGPT – одна из самых популярных в мире моделей ИИ, которая обучается понимать и генерировать текст в разных стилях и поддерживать диалоги с пользователями. Нейронная сеть, созданная на архитектуре GPT (Generative Pre-trained Transformer), разработана группой исследователей и инженеров компании OpenAI.

Как видно из схемы однослойной нейронной сети, представленной справа, сигналы [math]x_1, x_2, \ldots x_n[/math] поступают на входной слой (который не считается за слой нейронной сети), а затем сигналы распределяются на выходной слой обычных нейронов. На каждом ребре от нейрона входного слоя к нейрону выходного слоя написано число — вес соответствующей связи.

Многослойные нейронные сети

Создание Midjourney и его уникальной возможности генерации изображений на основе текстовых подсказок представляет собой интересное развитие в области искусственного интеллекта и цифрового творчества. Инициатором этого проекта стал Дэвид Хольц – выдающийся математический гений и предприниматель-ренегат, чьи достижения в области технологии трехмерного управления движением внесли значительный вклад в цифровую индустрию. Он является техническим директором и соучредителем компании Leap Motion, базирующейся в Сан-Франциско.

Как правило, в большинстве нейронных сетей есть так называемый входной слой, который выполняет только одну задачу — распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений. В остальном нейронные сети делятся на основные категории, представленные ниже.

Как видно на рисунке справа, у нейрона есть [math]n[/math] входов [math]x_i[/math] , у каждого из которого есть вес [math]w_i[/math] , на который умножается сигнал, проходящий по связи. После этого взвешенные сигналы [math]x_i \cdot w_i[/math] направляются в сумматор, который аггрегирует все сигналы во взвешенную сумму. Эту сумму также называют [math]net[/math] . Таким образом, [math]net = \sum_^ w_i \cdot x_i = w^T \cdot x[/math] .

Следующей впечатляющей вехой стал прорыв ученого в области распознавания изображений с помощью AlexNet, разработанной в сотрудничестве с его учениками Алексом Крижевским и Ильей Суцкевером (к слову, уроженцем Нижнего Новгорода) для ImageNet challenge в 2012 году. Так началась эпоха развития компьютерного зрения.

Однако искусственный интеллект был придуман задолго до сегодняшних технологий. Первыми, кто придумал нейросеть, были американский математик Уоррен Маккаллок и нейрофизиолог Уолтер Питтс. В 1943 году эти ученые создали первую модель биологического нейрона, что стало отправной точкой для развития нейронных сетей в будущем.

Приведем очень грубое, но потому более-менее понятное объяснение (да простят нас программисты). В ходе обучения нейроны одного слоя, а в слое их несколько (сотен, тысяч, миллионов – зависит от сложности нейросети) транслируют получаемый сигнал всем нейронам следующего слоя (каждый нейрон одного слоя связан со всеми нейронами другого слоя). Этот второй (его еще называют скрытым) слой производит вычисления (сетевую или активную функцию) и рассылает результат всем нейронам третьего слоя (выходного слоя). Этот слой тоже вычисляет сетевую функцию и сравнивает результат с вводимыми изначально данными и результатами срединного слоя (слоев). Далее происходит корректировка связей. Так нейросеть и обучается, устраняя ошибки (разногласия) в своих «умозаключениях» (разницу на входе и выходе).

Задача обучения перцептрона — подобрать такие [math]w_0, w_1, w_2, \ldots, w_n[/math] , чтобы [math]sign(\sigma(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n))[/math] как можно чаще совпадал с [math]y(x)[/math] — значением в обучающей выборке (здесь [math]\sigma[/math] — функция активации). Для удобства, чтобы не тащить за собой свободный член [math]w_0[/math] , добавим в вектор $x$ лишнюю «виртуальную размерность» и будем считать, что [math]x = (1, x_1, x_2, \ldots, x_n)[/math] . Тогда [math]w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n[/math] можно заменить на [math]w^T \cdot x[/math] .

Руководит OpenAI правление, в которое входят Грег Брокман, Илья Суцкевер, Сэм Олтман и другие внештатные члены. По слухам, в ближайшем будущем организация планирует расширить свое влияние в сфере робототехники и уже установила партнерские отношения с крупными игроками в технологической индустрии.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь