Нейросеть как сделать

0
25

Как сделать свою нейросеть за 10 минут на Python

Нейрослой

Из него мы используем метод exp, который нужен для вычисления экспонента и всех элементов входного массива. Но нам это в принципе не важно. Как я ранее говорил, это просто формула, которую мы применяем. И не обязательно быть математиком, чтобы это делать. Затем нам нужно объявить тренировочные данные. С этой целью мы создадим две переменные. Первая это training inputs. Она будет хранить в себе массив 4 на 3 с соответствующими входными данными, которые я наглядно . показывал ранее на табличке.

Все, что сейчас произошло у вас в мозгу, мы называем мышлением. Мозг принял входные данные, увидел выходные, вычислил взаимосвязь и впоследствии научился контролировать как их распознавать? Причем уже без необходимости в повторном вычислении взаимосвязи входных и выходных данных. Ну а нам осталось только воспроизвести этот же процесс в коде, чем мы сейчас и займемся. Но сначала давайте наглядно увидим, как будет выглядеть наш перцептрон. У нас будут входные данные, будет сам нейрон, конечно же результат и синапсы. Как уже понятно, синапсы это некая связь между . входными данными и тем, что попадет в нейрон. Соответственно, у нас есть какие-то входные данные, это будут нолики и единицы, своего рода аналог true и false в булевом типе данных.

Допустим, передадим ей значение 1.1.0. Как вы помните, во входных тренировочных данных такого значения у нас не было. В коде задействовать нашу уже обученную нейросеть можно также очень просто. Запускаем получившийся код и видим результат. Наша нейронная сеть прекрасно справилась и поняла, что очень большая вероятность того, что на выходе должна быть цифра 1. И то, что мы сейчас с вами запрограммировали, это простейшая нейронная сеть, которая называется Перцептрон. Но даже с такой простой нейронкой уже можно решить решать какие-то более-менее реальные задачи.

Итак, давайте рассмотрим пример с топологией сети рассмотренной выше. У нас есть три входных нейрона со значениями ИСТИНА, ЛОЖЬ и ИСТИНА соответственно, два нейрона в среднем слое нейросети (эти слои также называют скрытыми), и один выходной нейрон, который сообщит нам о решении, принятом нейросетью. Так как наша сеть еще не обучена, поэтому значения весов на входах нейронов мы возьмем случайными в диапазоне от -0,5 до 0,5.

Конечно, после сигмоида мы никогда не получим такие значения, но и результат после обучения нашей нейронки сложно назвать хоть чем-то хотя бы близко похожим на то, что нам нужно. И происходит это потому, что метод обратного распространения подразумевает многократное обучение нейронной сети. В коде которого будет производиться регулирование в соответствии с уже известными алгоритмами выравнивания весов.

Вторая переменная это Training Outputs. Она хранит в себе массив 1 на 4, и это наши ожидаемые выходные данные. Также не забываем транспонировать вторую переменную, чтобы ее содержание поменялось и было 4 на 1. Дальше нам надо инициализировать веса. Ранее я уже говорил, что мы будем это делать при помощи генератора случайных чисел. Чтобы и у вас, и у меня получались одинаковые случайные числа, давайте договоримся и укажем сид генератора в значении 1.

Переходим к обучению

Давайте внимательно посмотрим на него. Вышенаписанная формула — это не что иное, как определение умножения матрицы на вектор. И в самом деле, если мы возьмем матрицу W размера n на m и выполним ее умножение на X размерности m, то мы получим другое векторное значение n-размерности, то есть как раз то, что надо.

И теперь, когда мы понимаем общий принцип действия, давайте перейдем к написанию кода, чтобы более наглядно увидеть реализацию всего, что я только что рассказывал. Но сначала в Python нам нужно установить модуль numpy. Он нам понадобится для легкой и высокопроизводительной работы с многомерными массивами. В описании я оставлю ссылку на репозиторий numpy в PyPy. Устанавливается он, как и любой другой модуль в Python, без каких-либо проблем. Теперь в коде начнем с импорта numpy, а затем объявим функцию sigmoid для реализации нашей функции активатора. Уже здесь нам пригождается numpy.

Где weight — текущий вес, output — значение на выходе предыдущего нейрона, delta — дельта весов, которую мы рассчитали ранее и learning rate — значение, подбираемое экспериментально, от которого зависит скорость обучения нейросети. Если оно будет слишком маленьким — нейросеть будет более чувствительна к деталям, но будет обучаться слишком медленно и наоборот. Для примера возьмем learning rate равным 0,3. Итак новый вес для первого входа выходного нейрона будет равен:

Для уменьшения ошибки нейронной сети надо поменять весовые коэффициенты, причем послойно. Каким же образом это осуществить? Ничего сложного в этом нет: надо воспользоваться методом градиентного спуска. То есть нам надо рассчитать градиент по весам и сделать шаг от полученного градиента в отрицательную сторону. Давайте вспомним, что на этапе прямого распространения мы запоминали входные сигналы, а во время обратного распространения ошибки вычисляли дельты, причем послойно. Как раз ими и надо воспользоваться в целях нахождения градиента. Градиент по весам будет равняться не по компонентному перемножению дельт и входного вектора. Дабы обновить весовые коэффициенты, снизив таким образом ошибку нейросети, нужно просто вычесть из матрицы весов итог перемножения входных векторов и дельт, помноженный на скорость обучения. Все вышеперечисленное можно записать в следующем виде:

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая раздевает девушек бесплатно

Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.

И все это нужно будет повторить, например, 20 тысяч раз. В коде этот алгоритм у нас будет выглядеть следующим образом. Если вы хотите более подробно на математическом уровне узнать о том, как именно устроен данный алгоритм обучения нейросети, то я в описании оставлю ссылку на статью, которая на русском языке понятно объясняет, как это все работает. Ну а теперь мы запустим код, и как видите, после запуска мы получаем результат, больше похожий на правду. И по сути уже сейчас наша нейронная сеть обучена. Она сама научилась выявлять взаимосвязь между входными и выходными данными. Давайте проверим, как она справится в какой-то новой для себя ситуации.

Нейросети в IT

Таким образом наш нейрон сможет принимать любую сумму значений всех входящих сигналов и на выходе будет выдавать значение от 0 до 1. Это хорошо подходит для принятия бинарных решений, и мы условимся, что если число на выходе нейросети > 0.5, мы будем расценивать его как истину, иначе — как ложь.

В качестве активационной функции нейрона может выступать любая функция, существующая на всем отрезке значений, получающихся на выходе нейрона и входных данных. Для нашего примера мы возьмем сигмоиду. Она существует на отрезке от минус бесконечности до бесконечности, плавно меняется от 0 до 1 и имеет значение 0,5 в точке 0. Идеальный кандидат. Выглядит она следующим образом:

Нейросети встречаются в природе в виде нервной системы того или иного существа. В зависимости от выполняемой функции и расположения, они делятся на различные отделы и органы, такие как головной мозг, спинной мозг, различные проводящие структуры. Но все их объединяет одно — они состоят из связанных между собой структурно-функциональных единиц — клеток нейронов.

Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:

Последовательность нейрослоев часто применяют для более глубокого обучения нейронной сети и большей формализации имеющихся данных. Именно поэтому, чтобы получить итоговый выходной вектор, нужно проделать вышеописанную операцию пару раз подряд по направлению от одного слоя к другому. В результате для 1-го слоя входным вектором будет являться X, а для последующих входом будет выход предыдущего слоя. То есть нейронная сеть может выглядеть следующим образом:

Под искусственной нейронной сетью (ИНС) понимают математическую модель (включая ее программное либо аппаратное воплощение), которая построена и работает по принципу функционирования биологических нейросетей — речь идет о нейронных сетях нервных клеток живых организмов.

На выходе этой сети находятся мышцы, отвечающие за расширение или сужение зрачка, и приводят эти механизмы в действие в зависимости от сигнала, полученного из нейросети. И таких механизмов огромное количество в теле любого живого существа, обладающего нервной системой.

Все нейроны по сути одинаковы, и принимают решение о том, какой силы сигнал передать далее с помощью одного и того же алгоритма. Это алгоритм называется активационной функцией. На вход она получает сумму значений входных сигналов, а на выход передает значение выходного сигнала.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь