Нейросеть для решения задачи регрессии какую функцию потерь

0
22

Функции оценки, потерь, оптимизации – основы алгоритма Машинного Обучения

Шаг 5. Настройка автоматического подбора параметров Нейросети

Обучение сети происходит итерационно. При каждой итерации считывается весь обучающий набор данных и изменяются веса Нейросети. Этот процесс продолжается до тех пор, пока относительные изменения весов не станут меньше заданного порога или количество итераций не превысит заданной величины.

В большинстве обучающих сетей ошибка рассчитывается как разница между фактическим выходным значением y и прогнозируемым выходным значением ŷ. Функция, используемая для вычисления этой ошибки, известна как функция потерь, также часто называемая функцией ошибки или затрат.

Средняя квадратичная ошибка (MSE): средняя квадратичная ошибка является наиболее распространенной функцией потерь. Функция потерь MSE широко используется в линейной регрессии в качестве показателя эффективности. Чтобы рассчитать MSE, надо взять разницу между предсказанными значениями и истинными, возвести ее в квадрат и усреднить по всему набору данных.

RMSprop – это специальная версия Adagrad, разработанная профессором Джеффри Хинтоном в его классе нейронных сетей. Вместо того, чтобы вычислять все градиенты, он вычисляет градиенты только в фиксированном окне. RMSprop похож на Adaprop, это еще один оптимизатор, который пытается решить некоторые проблемы, которые Адаград оставляет открытыми.

Мини-пакетный градиентный спуск: вместо использования всех данных, мини-пакетный градиентный спуск делит тренировочный набор на меньший размер, называемый партией, и обозначаемый буквой «b». Таким образом, мини-пакет «b» используется для обновления параметров модели на каждой итерации.

В контексте технологии машинного обучения, оценка – это статистический термин для нахождения некоторого приближения неизвестного параметра на основе некоторых данных. Точечная оценка – это попытка найти единственное лучшее приближение некоторого количества интересующих нас параметров. Или на более формальном языке математической статистики — точечная оценка это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.

По умолчанию процесс автоматического подбора останавливается при невозможности найти лучшие параметры, чем уже найденные. Для ограничения времени работы предусмотрена возможность ограничить, в том числе одновременно количество шагов автоподбора и время автоподбора:

Эта произведение многих вероятностей может быть неудобным по ряду причин. В частности, оно склонно к числовой недооценке. Кроме того, чтобы найти максимумы/минимумы этой функции, мы должны взять производную этой функции от θ и приравнять ее к 0. Поскольку это произведение членов, нам нужно применить правило цепочки, которое довольно громоздко. Чтобы получить более удобную, но эквивалентную задачу оптимизации, можно использовать логарифм вероятности, который не меняет его argmax, но удобно превращает произведение в сумму, и поскольку логарифм – строго возрастающая функция (функция натурального логарифма – монотонное преобразование), это не повлияет на итоговое значение θ.

ЧИТАТЬ ТАКЖЕ:  Все нейросети которые рисуют

Смещение

Задача, решаемая машинным обучением, заключается в попытке предсказать переменную y по заданному входному вектору x. Мы предполагаем, что существует функция f(x), которая описывает приблизительную связь между y и x. Например, можно предположить, что y = f(x) + ε, где ε обозначает часть y, которая явно не предсказывается входным вектором x. При оценке функций нас интересует приближение f с помощью модели или оценки fˆ. Функция оценки в действительности это тоже самое, что оценка параметра θ; функция оценки f это просто точечная оценка в функциональном пространстве. Пример: в полиномиальной регрессии мы либо оцениваем параметр w, либо оцениваем функцию отображения из x в y.

Кросс-энтропия (или логарифмическая функция потерь – log loss): Кросс-энтропия измеряет расхождение между двумя вероятностными распределениями. Если кросс-энтропия велика, это означает, что разница между двумя распределениями велика, а если кросс-энтропия мала, то распределения похожи друг на друга.

Такое определение точечной оценки является очень общим и предоставляет разработчику большую свободу действий. Почти любая функция, таким образом, может рассматриваться как оценщик, но хороший оценщик – это функция, значения которой близки к истинному базовому значению θ, которое сгенерированно обучающими данными.

мы предполагаем, что у имеет нормальное распределение с ŷ в качестве среднего значения распределения и некоторой постоянной σ² в качестве дисперсии, выбранной пользователем. Нормальное распределения являются разумным выбором во многих случаях. В отсутствие предварительных данных о том, какое распределение в действительности соответствует рассматриваемым данным, нормальное распределение является хорошим выбором по умолчанию.

Стохастический Градиентный Спуск (SGD): обновляет параметры, используя только один обучающий параметр на каждой итерации. Такой параметр обычно выбирается случайным образом. Стохастический градиентный спуск часто предпочтителен для оптимизации функций затрат, когда есть сотни тысяч обучающих или более параметров, поскольку он будет сходиться быстрее, чем пакетный градиентный спуск.

Дисперсия оценки обозначается как Var(θˆ), где случайная величина является обучающим множеством. Альтернативно, квадратный корень дисперсии называется стандартной ошибкой, обозначаемой как SE(θˆ). Дисперсия или стандартная ошибка оценщика показывает меру ожидания того, как оценка, которую мы вычисляем, будет изменяться по мере того, как мы меняем выборки из базового набора данных, генерирующих процесс.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь