Искусственный интеллект что

0
37

Искусственный интеллект

Как технология ИИ может помочь организациям

Первые попытки теоретического проектирования мыслящих машин были предприняты после Второй Мировой войны сразу несколькими исследователями независимо друг от друга. В 1947 году Алан Тьюринг прочитал первую лекцию об искусственном интеллекте, в которой, вероятнее всего, первым постулировал, что построение оного будет с большей вероятностью заключаться в написании компьютерной программы, чем в проектировании вычислительной машины. Тремя годами позже он выпустил статью «Счётные машины и интеллект» (англ. Computing Machinery and Intelligence ), в которой обсудил вопросы оценки интеллектуальности машины и предложил критерий, по которому машина может считаться интеллектуальной, если она может убедительно представиться человеком информированному наблюдателю. Это было названо по имени создателя, «Тестом Тьюринга». При этом, в дальнейшем неоднократно проводились слепые тесты Тьюринга, которые показали, что большинство людей готовы признать человеком довольно глупую программу [1] .

науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.

Медицина. В системе здравоохранения врачи при помощи ИИ прогнозируют болезни, выявляют группы пациентов с высоким риском заболеваний, организуют меры профилактики. Искусственный интеллект помогает автоматизировать и оптимизировать различные процессы в лечебных учреждениях, повышать точность диагностики и снизить риски для пациентов. Новейшие технологии дают возможность врачам персонализировано подбирать лечение, назначать те или иные лекарства и исследования. Всевозможные приложения и чат-боты улучшают уровень обслуживания в клиниках в целом: помогают пациентам записаться к врачу, получить результаты анализов, найти нужный кабинет или корпус.

Сельское хозяйство. ИИ активно применяют и во многих отраслях сельского хозяйства, особенно роботизация набирает обороты в растениеводстве, животноводстве, рыбоводстве. С помощью искусственного интеллекта управляют полностью или частично автоматизированными вертикальными фермами и теплицами, выявляют заболевания растений на ранних стадиях. А еще алгоритмы машинного обучения, анализируя большие объемы данных, могут выявлять закономерности и делать прогнозы. Основываясь на этой информации, фермеры могут с точностью прогнозировать, какой объем урожая и в какие сроки они соберут, а также могут сразу просчитать его себестоимость.

В 1956 году Джон Маккарти впервые в истории ввёл в оборот термин «искусственный интеллект» (англ. artificial intelligence ). Год спустя Аллен Ньюэлл, Герберт Саймон и Клиффорд Шоу разработали первую программу, попавшую в эту категорию. Она предназначалась для игры в шахматы и в отличие от предыдущих основывалась на эвристике, то есть не имела точных теоретических оснований. В 1960 году ими же была разработана программа для решения головоломок, основанная на тех же принципах [3] .

Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .

Обучение и развитие моделей ИИ

Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.

Большинство компаний сделали изучение данных своим приоритетом и вкладывают в него значительные средства. Опрос McKinsey 2021 года по ИИ показал, что количество компаний, сообщивших о внедрении ИИ по крайней мере в одной функции, увеличилось до 56 % по сравнению с 50 % годом ранее. Кроме того, 27% респондентов сообщили, что по крайней мере 5% доходов могут быть связаны с искусственным интеллектом, по сравнению с 22% годом ранее.

Чтобы повысить точность этих моделей, инженер будет передавать данные в модели и настраивать параметры до тех пор, пока они не достигнут заданного порога. Эти потребности в обучении, измеряемые сложностью модели, растут в геометрической прогрессии с каждым годом.

Технологии на основе ИИ помогают повысить эффективность и производительность труда за счет автоматизации процессов и задач, которые раньше выполнялись людьми. ИИ также умеет интерпретировать объемы данных, которые не под силу интерпретировать человеку. Это умение может приносить существенные преимущества для бизнеса. Например, Netflix использует машинное обучение для обеспечения уровня персонализации, что помогло компании увеличить свою клиентскую базу более чем на 25 процентов.

ЧИТАТЬ ТАКЖЕ:  Где в Москве купить дешево Макбук?

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

Искусственный интеллект может применяться как в качестве партнёра в играх (например, шахматах), так и в более серьёзных задачах. Например, с 1990-х годов ИИ используется для распознания речи, что повышает удобство различных сервисов. Способен искусственный интеллект и распознавать живую речь, для чего недостаточно просто распознавать отдельные слова. Ещё один вариант использования — компьютерное зрение. Мир, в котором мы находимся имеет три измерения, в то время как устройства ввода визуальной информации, что у человека, что у машины, воспринимают только двухмерную картинку. Задача ИИ в данном случае — обработать имеющееся изображение для распознания объектов на нём. Также ИИ используются для так называемых «экспертных систем» — систем анализа данных в определённой сфере знаний или деятельности, действующей эффективнее, чем человек за счёт высокой скорости обработки [3] [7] [8] .

От искусственного интеллекта к интеллекту адаптирующемуся

Искусственный интеллект (Artificial Intelligence, AI) — это технология, которая позволяет компьютерным системам и машинам моделировать процессы человеческого интеллекта. С ее помощью роботы распознают речь, обрабатывают естественный язык, отвечают на вопросы пользователей, распознают и обрабатывают изображения благодаря машинному зрению, генерируют тексты, пишут музыку или программный код. Другими словами, выполняют задачи и действия, требующие разумного мышления.

Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :

ИИ становится неотъемлемой частью бизнеса. Рано или поздно все компании вынуждены будут использовать технологии ИИ, чтобы создать собственную экосистему и сохранить конкурентоспособность. Те, кто пренебрегает прогрессом, в следующие 10 лет рискуют остаться за бортом.

Образование. Искусственный интеллект способен снизить рутинную нагрузку на преподавателей и помочь учащимся в освоении учебного материала. К примеру, робот может проводить тестирование и тут же выдавать его результаты. Или генерировать задание для проверки языковой грамотности и понимания текста. С помощью ИИ в некоторых учебных заведениях уже реализуют предсказательную аналитику. Она помогает педагогам оценить, сколько времени ученики потратят на то или иное упражнение, домашнее задание или контрольную работу.

Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

Финансовая и банковская сферы. Искусственный интеллект используют в финансовой сфере, к примеру, при проведении торгов, оказании персональных финансовых консультаций, для онлайн-идентификации пользователей банковскими услугами, кредитного скоринга и т. п. Банки активно применяют чат-ботов и виртуальных помощников для информирования клиентов о предложениях и услугах, а также для обработки транзакций, где в участии человека нет необходимости.

ИИ стал универсальным термином для приложений, которые выполняют сложные задачи, которые когда-то требовали участия человека, например, общение с клиентами в Интернете или игра в шахматы. Этот термин часто используется взаимозаменяемо с его подобластями, которые включают машинное обучение (ML) и глубокое обучение.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь