Содержание статьи
Нейросети: назначение и практические возможности
Типы нейросетей
К середине 2019 года нейросети обрели невероятную мощь. До восстания машин еще далеко, но прогресс налицо: они умеют не только развлекать, но и лечить, учить и работать. Попробуем на простых примерах, рассказать, что это такое, и как нейросети, обучаясь сами, обучают и нас
Итак, нейросети уже не теоретическая наработка, а практически значимый в жизни современного человека инструмент. Постоянно притом совершенствуемый. Нейронки прежде всего призваны автоматизировать действия человека по написанию текста, созданию картинок и видео, управлению устройствами. В современном поколении возможности нейросетей в данной области объективно ограничены (что обусловлено прежде всего «догоняющими» принципами формирования баз данных нейронок).
Возможности современных нейронок предопределяют их растущую важность в жизни человека. Сейчас нейросети могут создавать (преобразовывать) в соответствии с запросом пользователя различные виды данных — текстовые, графические, видео или аудио. Либо формировать иные значимые сигналы (например, обеспечивающие управление устройствами).
Пусть пользователь написал «отлично». Нейрон «Б» присвоил настроению статус 2 и передал сигнал нейрону «В». Тот подбирает и направляет пользователю фразу «рад за тебя» (или иную схожую по смыслу из тех, которые присутствуют в базе данных — как вариант, фраза подбирается в случайном порядке).
Современные высокотехнологичные нейросети, конечно же, совершают в миллиарды раз больше операций, чем наши нейроны «А», «Б» и «В» (при комбинировании несопоставимо большего количества слоев в структуре нейросети). Функционируют нейронки на базе алгоритмов, создаваемых лучшими учеными и программистами мира, которые являются экспертами в сфере искусственного интеллекта.
В основе биологической сети — нейроны, то есть нервные клетки, соединенные друг с другом синапсами. Связки между искусственными нейронами (алгоритмическими участками математической модели) обозначаются тем же термином. Искусственная нейросеть, подобно биологической, приспособлена к приему информации (сигналов) от другой сети, пользователя или иного источника, ее обработке и выводу (передаче в другую сеть).
В нескольких абзацах расскажем, что это такое, как работает и чего ждать. Сразу скажем – на научную точность не претендуем, потому что тему в трех словах не опишешь, зато оставим в конце несколько ссылок на интересные примеры использования нейронных сетей, которые могут пригодиться и вам.
Его суть — в наделении компьютера способностью детально распознавать изображения (видео) с камеры или экрана, чтобы затем использовать результат такого распознавания в практически значимых целях. Например, обеспечить автономное управление автомобилем. Нейросети в этом случае могут анализировать дорожную обстановку на основе получаемого видеоконтента, а затем передавать контроллерам на автомобилях сигналы для осуществления необходимых маневров.
В чем значимость нейронок?
Потому что мощности стали позволят разрабатывать нейросети даже небольшим компаниям. А главное — появились готовые, предобученные нейросети, распознающие образы, на основании которых можно делать свои приложения, не занимаясь длительной подготовкой нейросети к работе. По сути, создав один раз нейросеть, которая что-то делает с фотографиями (различает лицо, например), вы потом сможете использовать этот алгоритм и на других подобных проектах.
Рассмотренный нами выше пример трехнейронной сети — простейший вариант нейронки прямого распространения. Сигнал от первой «клетки», получившей запрос от пользователя, передается во вторую, которая передает пользователю ответ, не информируя об этом первую клетку.
На основе тех или иных исторических данных либо значимых фактов, рассматривая их в большом количестве перечней, нейросети учатся прогнозировать ход тех или иных событий (либо предоставлять рекомендации для лучшей подготовки к событиям). Это может быть прогнозирование погоды, роста или падения акций на рынке. Так же, как, например, рекомендации по выбору товара или услуги для потребителя (с учетом предыдущих его покупок или иных факторов, характеризующих его потребительское поведение).
Нейронные сети – это одно из направлений в разработке систем искусственного интеллекта. Не единственное, но очень популярное из-за своих возможностей в сфере развлечения. Сейчас о них говорят на каждом углу, а впервые о таких сетях услышали еще в 1943 году. Кстати, тогда еще не существовало даже понятия «искусственный интеллект», а сети уже были.
Примечательно, что разным нейросетям по итогам обучения (тестирования) могут выставляться оценки — показатели результативности обучения. Если конкретная нейросеть получит более высокие баллы, то именно ее модель будет признана наиболее удачной и на базе нее разработчики акцентируют дальнейшее улучшение полезных свойств нейронки в той или иной сфере применения.
Нейросеть (искусственная нейронная сеть) — реализованная в компьютерной программе математическая модель, которая создана по принципам действия нейронных сетей в живых организмах. Назначение этой модели — наделение компьютера функционалом для обработки информации на уровне, сопоставимом с возможностями человеческого мозга.
Среди основных областей применения нейронных сетей — прогнозирование, принятие решений, распознавание образов, оптимизация, анализ данных. Нейросети лежат в основе большинства современных систем распознавания и синтеза речи, а также распознавания и обработки изображений. Они применяются в некоторых системах навигации, будь то промышленные роботы или беспилотные автомобили. О примерах мы поговорим чуть позже, а пока же узнаем…
Особенность человеческой речи в том, что она не слишком стандартна — может произноситься с акцентом, диалектизмами, дефектами, разной тональностью, эмоциональной окраской. Нейросети используют большие базы данных вариаций построения речи, и это помогает более точно распознавать ее компьютерным программам соответствующего назначения.