4 причины, почему искусственный интеллект нужен даже гуманитариям, и ответы на самые стыдные вопросы о технологии будущего
Основы теории: Что такое искусственный интеллект?
По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.
Данный материал является частью большого проекта, посвященного развитию у детей личностного потенциала и ключевых компетенций XXI века. О чем проект? Мы рассказываем о ребенке и его развитии как о личности, а не объекте образовательного процесса. Мы объясняем, как меняется мир, и показываем, какие навыки помогут ребенку гармонично жить в меняющейся реальности. Другие материалы проекта раскрывают темы развития социально-эмоционального интеллекта, финансовой и цифровой грамотности, когнитивного развития, инклюзии в школе и др. Проект подготовлен совместно с сайтом об образовании и воспитании детей Мел.
Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.
Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.
По статистике международного сервиса по поиску работы LinkedIn, только с 2018 по 2019 год количество вакансий для специалистов по ИИ выросло на 56%. А средняя зарплата в США составила свыше 650 тысяч рублей в месяц. В России, конечно, цифры чуть более скромные, но не менее впечатляющие. Минимальная зарплата начинающего специалиста, по данным HH, — 115 тысяч рублей.
Системное мышление важно, поскольку большинство аналитиков работают в коммерческих компаниях, им нужно мыслить наперёд, оценивать возможные риски, понимать бизнес-процессы, чтобы оптимизировать их. Также, поскольку большая часть продуктов, использующих технологии ИИ, ориентированы на потребителей, специалист должен обязательно помнить об их потребностях.
Легко начать и продолжить (можно даже дома)
Эффективная коммуникация — залог продуктивной работы. Стереотип о программисте как о замкнутом «ботанике», который только и умеет, что кодить, безнадёжно устарел. В работе аналитиков полно сложных технических терминов, нюансов и тонкостей, которые они должны лаконично объяснять руководству. Легко ли это сделать? Едва ли. Вот почему важно уметь ясно излагать свои мысли и объяснять даже самые замысловатые математические конструкции доступным языком.
Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.
Хотя это не всегда очевидно, искусственный интеллект уже давно стал неотъемлемой частью повседневной жизни миллионов людей. Виртуальные помощники, такие как Siri и Alexa, являются яркими примерами того, как искусственный интеллект может поддерживать человека в самых разных сферах — хотя бы тем, что делает жизнь более удобной.
По своей сути машинное обучение — это способность компьютерной системы обучаться на основе данных, не будучи явно запрограммированной. Одним из примеров является фильтрация спама в электронной почте. Обнаруживая схожие закономерности в спам-сообщениях, почтовые платформы могут узнать, какие письма полезны, а какие следует держать подальше от папки «Входящие».
Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.
ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.










































