Содержание статьи
Нейронные сети на Python: как всё устроено
Курс от GeekBrains для освоения Python и последующей работы с нейросетями
В статье рассмотрены способы и методы изучения и построения нейронных сетей . Показано, что изучение принципов функционирования нейронных сетей , их применение для решения тех или иных задач возможны только через практику. Проведен анализ различных программных сред , которые могут быть использованы на лабораторных и практических занятиях по изучению и применению нейронных сетей . Выделен современный облачный сервис Google Colaboratory, рекомендуемый для обучения основам нейронных сетей благодаря наличию в нем предустановки библиотеки Tensorflow и библиотеки для работы на языке Python, бесплатного доступа к графическим процессорам, возможности написания и выполнения программного кода в браузере, а также отсутствию необходимости специальной настройки сервиса. Рассматриваются примеры проектирования нейронных сетей в Colaboratory, в частности, решение задач распознавания и классификации изображений, прогнозирования. Показано, что для распознавания и классификации изображений может быть использована сверточная нейронная сеть , особенностью которой является получение карты признаков изображения с последующей сверткой. Приведены фрагменты программного кода для этапов подключения необходимых библиотек, загрузки датасетов, нормализации изображений, сборки нейронной сети и ее обучения. Решение задачи прогнозирования рассмотрено на примере нейронной сети прямого распространения с алгоритмом обратного распространения ошибок в процессе обучения, суть которой в получении на выходном слое ожидаемого значения при подаче на входной слой соответствующих данных. Обратное распространение ошибок заключается в настройке весовых коэффициентов, дающих наибольшую корреляцию между входным набором данных и соответствующим ему результатом.
но). Слой пулинга представляет собой нелинейное уплотнение карты признаков, при котором группа пикселей уплотняется до одного пикселя, проходя нелинейное преобразование. Полносвязный слой выполняет нелинейные преобразования извлеченных признаков и собственно реализует классификацию. Для решения проблемы переобучения используется метод Dropout(0.2), где 0.2 — доля нейронов, случайно выключаемых из процесса обучения.
TensorFlow — библиотека для машинного обучения от компании Google с открытым исходным кодом. Применяется для построения и тренировки нейронной сети, решающей задачи нахождения и классификации образов. Библиотека построена на парадигме программирования потоков данных, позволяющей оптимизировать математические вычисления. Вычисления в TensorFlow выполняются при помощи графа потоков данных, узлы которого отображают операции, а ребра — потоки данных между узлами.
Помимо того, что в Colaboratory можно писать и выполнять код Python в браузере, не требуется настройка сервиса, имеется бесплатный доступ к графическим процессорам и документам других пользователей. Все это делает облачный сервис Colaboratory доступным решением для обучения студентов основам нейронных сетей.
нейронные сети / программные среды / нейронные сети для начинающих / библиотеки и языки программирования / задача классификации / задача прогнозирования. / neural networks / software environments / learning how neural networks work for beginners / libraries and programming languages / classification problem / forecasting problem
Помимо Python, для написания программного кода, реализующего нейронную сеть, используются языки R, C Sharp, C++, Haskell, Java, Go и Swift. По-прежнему применяются такие пакеты прикладных программ, как MatLab и Deductor. Однако их использование ограничено отсутствием выбора видов и архитектур нейронных сетей.
Нейронная сеть как подотрасль машинного обучения
Сегодня IT-индустрия развивается небывалыми темпами, вместе с этим растет популярность машинного обучения. Оно оказывает огромное влияние на многие процессы в мире, поэтому все больше людей интересуется ее направлениями. Одно из них – нейронные сети. Они строятся по принципу организации и функционирования нашего мозга.
Можно привести аналогичный пример с другим языком программирования. Фортран – один из первых языков высокого уровня, на котором написано множество программ и библиотек подпрограмм. Но сегодня программистами он не используется, зато широко распространен у физиков.
Одна из разновидностей машинного обучения – обучение с учителем. Его суть заключается в том, что систему «тренируют». На первом этапе ей предлагают множество примеров определенной проблемы и желаемый вывод, таким образом, ее учат понимать прошлые данные. На втором этапе, когда система натренирована, ей предоставляют новые входные данные с целью самостоятельного предсказания выводов.
В последние годы методы глубинного обучения — нейронные сети — позволили достичь впечатляющих успехов в таких областях, как компьютерное зрение, обработка естественного языка, обработка аудио [1, 2]. Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений, подобных выполняемым человеческим мозгом. Бытует мнение, что нет таких задач, с которыми не может справиться нейронная сеть, только было бы достаточно примеров для ее обучения [3].
После обучения нейронная сеть будет выдавать числовые результаты, по значениям которых осуществляется классификация: если результат значительно больше 1, то высока уверенность в определении метки класса «собаки», если результат намного меньше 0, то изображению присваивается метка класса «кошки» (рис. 2).
Для программирования нейронных сетей в настоящее время наиболее часто используется язык Python благодаря множеству библиотек с набором встроенных математических функций, таких как произведение векторов, транспонирование и тому подобное. Например, используя библиотеку Numpy, можно разработать простую нейронную сеть, решающую задачу прогнозирования. Библиотека Keras применяется при программировании сетей прямого распространения и решения задач распознавания речи. Для нейронных сетей, работающих с изображениями, необходимо подключение другого модуля, например TensorFlow [6].
Гибкость. Нейросети – преимущественно небольшие программы, но при этом существует необходимость часто изменять их, подбирая наилучшую архитектуру, предобработку данных и другие параметры. Поэтому трудности с легаси-кодом практически отсутствуют, но есть потребность в быстрой разработке. Создание и построение нейронных сетей на Python – вариант, удовлетворяющий этим требованиям лучше, чем использование C++ или Java. Фреймворки для машинного обучения – это фронтенд на Python или Torch и бэкендом на C++, чаще всего.
Рассматриваются примеры проектирования нейронных сетей в Colaboratory, в частности, решение задач распознавания и классификации изображений, прогнозирования. Показано, что для распознавания и классификации изображений может быть использована сверточная нейронная сеть, особенностью которой является получение карты признаков изображения с последующей сверткой. Приведены фрагменты программного кода для этапов подключения необходимых библиотек, загрузки датасетов, нормализации изображений, сборки нейронной сети и ее обучения.