Содержание статьи
Искусственный интеллект, нейронные сети и машинное обучение в маркетинге: в чем разница
Обманчивая простота применения нейронных сетей
Методов обучения и архитектур сетей разработано огромное количество, так что неспециалисту оценить преимущества того или иного подхода нет никакой возможности. Как же быть? Бизнесу следует держать в уме, что не все нейросети одинаково полезны для решения конкретных задач, поэтому к выбору партнера надо подходить очень тщательно – так же, как к выбору стоматолога, а то потом обойдется себе дороже.
Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.
Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.
Искусственный интеллект (ИИ) сейчас на волне хайпа и, в отличие от блокчейна, падения интереса к теме пока не наблюдается. Это значит, что нас продолжат бомбардировать удивительными сообщениями из мира ИИ – то вселять надежду на скорое всеобщее благоденствие, то пугать апокалипсисом восстания машин в духе Терминатора. Чем отличается нейросеть от искусственного интеллекта и как же разобраться: где маркетинговая чепуха, а где настоящие достижения и реальные угрозы?
Представьте: если бы искусственный интеллект и нейросети были во времена Ньютона, и вместо того, чтобы размышлять об устройстве мироздания лежа под яблоней, сэр Исаак стал бы «скармливать» своей нейросетке видеозаписи падения разных предметов – перышка, шишки, чугунного ядра, куска материи, пылинки… Узнали бы мы тогда о законе всемирного тяготения? Вряд ли. Не верите? Вот описание одного эксперимента XVII века, которое приводит Ноам Хомский в том же интервью:
Чтобы подогреть интерес разработчиков, с 2010 года проводится конкурс ILSVRC (ImageNet Large Scale Visual Recognition Challenge), в рамках которого различные программные продукты соревнуются в классификации и распознавании объектов и сцен в самой большой в мире базе аннотированных изображений ImageNet. (На август 2017 года в ней было 14 197 122 изображения, разбитых на 21 841 категорию.)
Сверточные нейронные сети
Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:
«А давайте мы скормим ваши данные нейросети, она сама обучится и решит все ваши проблемы!» – так обычно говорят энтузиасты-неофиты, уверовавшие во всемогущество подхода deep learning. «Мы заменим роботами юристов, врачей, чиновников, водителей и так далее», – продолжают они.
Компьютер Deep Blue стоимостью в $10 млн, в котором было 480 специализированных шахматных процессоров и 30 обычных, обыграл чемпиона мира Каспарова еще в 1997 году. Но простая задача, с которой справляется маленький ребенок, – отличить котика от собачки – долго была машинам не под силу. Пока на сцену не вышли сверточные нейронные сети.
Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.
Если вы попробуете самостоятельно разобраться и для начала откроете Википедию на статье, например, про перцептрон, то скорее всего вас ждет разочарование – вроде и по-русски написано, но ничего не понятно! Если только вам не повезло изучать математику в университете, но тогда и заметка вам не нужна.
Дело, конечно, не в котиках – хотя по количеству публикаций на эту тему может сложиться мнение, что распознавание котиков и есть главная задача современной науки. На самом деле программисты и математики решали проблему компьютерного зрения, чтобы научить машины «видеть» с помощью нейронных сетей. Это нужно в робототехнике, беспилотных автомобилях, медицинской диагностике, системах безопасности и много еще где. А котики – ну просто так повелось, это был один из первых примеров на распознавание образов.
Почему это произошло? Если не вдаваться в мелкие подробности, то суть проста: вы не можете полагаться на данные, когда речь идет о действиях и мнениях людей. В голове у каждого из нас по 100 миллиардов нейронов, которые взаимодействуют непредсказуемым образом, и что наша нейросеть выдаст в очередной раз, никому неизвестно. Примитивные гипотезы типа «мы сейчас покажем клиенту нашу рекламу, потому что он лайкнул определенный пост» не работают.
Искусственный интеллект и нейронная сеть, как гениальный Шерлок Холмс, мгновенно находит решения самых разных задач, а туповатому доктору Ватсону только и остается восклицать: «Холмс! Но черт возьми, как?» Но нейро-Холмс не снисходит до объяснений, он просто выдает результат, который считает правильным по одному ему ведомым причинам.