Содержание статьи
Нейронные сети
Виды нейронных сетей
Конечно, попытки создания обособленных нейронных сетей уже есть, но их полной автономии добиться не удалось. Может быть, она и не нужна: это откроет путь в будущее, где роботам будут не нужны люди. А это уже что-то на грани фантастики. В реальности предназначение ИИ заключается в том, чтобы помогать человеку — и технологии развиваются именно в этом направлении.
Сверточные нейросети. Архитектура сверточных нейронных сетей похожа на нейросети прямого распространения, но они обладают бо́льшим количеством слоев. Это позволяет учитывать свойства входных данных и реализовывать прямое распространение эффективнее, что подходит для обработки изображений. Структура тоже однонаправленная (данные проходят от входного слоя к выходу), и обратных связей тут нет. Сверточные нейросети напоминают зрительную кору, у которой есть простые клетки, реагирующие на попадание света под разным углом, и сложные клетки, реакция которых связана с активацией простых. Они входят в набор глубокого обучения (deep learning) и позволяют распознавать объекты, прогнозировать, классифицировать изображения, находить аномалии и выполнять другие подобные задачи.
5. Глубокие Нейронные Сети (DNN): Погружение в Абстракции
Глубокие нейронные сети (DNN) представляют собой обширный класс сетей с большим числом слоев. Их уникальная способность автоматического извлечения признаков из сложных данных делает их востребованными в распознавании речи и анализе изображений.
Нейросети можно категоризировать по-разному — например, на однослойные и многослойные, на нейросети прямого распространения и рекуррентные, на радиально-базисные, а также по типу обучения: с учителем или без, аналоговые, двоичные или образные, с фиксированными или динамическими связями. Ультимативной классификации не существует. Инфографика, созданная в 2016 году, демонстрирует почему.
Даже при всем желании рассказать про все существующие виды нейросетей невозможно. Может быть, пока вы читаете этот материал, где-то уже придумали еще один алгоритм. Однако существует три наиболее чаще встречающихся разновидности нейросетей, на которых есть смысл остановиться подробно.
Используются нейросети и для решения более сложных задач. Например, сеть регрессионного типа, созданная в Центре компетенций НТИ «Искусственный интеллект», оптимизирует движение поездов. Алгоритм учитывает около 30 дополнительных параметров, в том числе наличие других поездов на пути, изменение скорости поезда из-за ландшафта и так далее.
7. Генеративные Сети (GAN): Искусство Творения в Мире Алгоритмов
Генеративные сети (GAN) представляют собой уникальный дуэт — генератор и дискриминатор, конкурирующие за создание и оценку подлинности данных. Используемые для генерации изображений, видео и других контентов, GAN стали невероятно важными в креативных сферах.
1. Перцептрон: Основа Искусственного Интеллекта
Знакомьтесь с перцептроном — фундаментальной формой нейронных сетей, созданным в 1957 году Фрэнком Розенблаттом. Этот инструмент представляет собой одиночный или множественный набор нейронов, способных принимать решения, основанные на входных данных. Важно понимать, что перцептрон стал отправной точкой для развития более сложных и эффективных структур.
Попробуйте сами
2. Многослойные Перцептроны (MLP): Строим Будущее С Искусственным Интеллектом
Эволюция привела к созданию многослойных перцептронов (MLP) – сетей, состоящих из входного, скрытого и выходного слоев. Внутренние взаимосвязи между нейронами каждого слоя формируют основу для эффективного решения задач классификации и распознавания образов.
Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.
Для генерации изображений можно воспользоваться, например, нейросетью Kandinsky, обученной специалистами Сбера, или нашумевшей Midjourney. Опробовать Kandinsky можно в приложении «Салют», команда «Позови художника». Если раньше для работы с нейросетями необходимо было скачивать или разворачивать их на сервере, то сейчас появились и более простые решения для удобства пользователей.
Если алгоритм имеет структуру нейронной сети, он способен анализировать данные, запоминать результат и предсказывать исходы различных экспериментов (здесь экспериментом может быть любое действие, связанное с обработкой данных). о строению нейросети действительно напоминают человеческий мозг и работают по тем же принципам, что и он. Но напрямую сравнивать их бессмысленно: мозг устроен значительно сложнее.
3. Рекуррентные Нейронные Сети (RNN): Магия Последовательностей
RNN созданы для работы с последовательными данными, такими как временные ряды или текст. Их уникальность в циклических связях, которые позволяют учитывать предыдущие входы. Такие сети прекрасно справляются с задачами обработки естественного языка и машинного перевода.
На сегодняшний день основные сферы применения нейросетей — это прогнозирование, принятие решений, распознавание образов, оптимизация и анализ данных. Машинное обучение лежит в основе большинства систем распознавания и синтеза речи, а также распознавания и обработки изображений. Сфера применения уже не имеет значения: автоматически регулировать экспозицию в приложении камеры на смартфоне или искать браконьеров на фотографиях в Саяно-Шушенском заповеднике — алгоритму по большому счету все равно.
Нейронные сети прямого распространения (Feed forward neural networks, FFNN). Прямолинейный вид нейросетей, при котором соседние узлы слоя не связаны, а передача информации осуществляется напрямую от входного слоя к выходному. FFNN имеют малую функциональность, поэтому часто используются в комбинации с сетями других видов.
6. Автокодировщики: Искусство Сжатия и Извлечения
Автокодировщики – это нейронные сети, обученные воспроизводить входные данные. Эффективность их применения проявляется в областях, таких как рекомендательные системы и уменьшение размерности данных, где важна точность воспроизведения.
Типы задач, которые решают нейронные сети
Примечание: При такой модели обучение нейронной сети сводится к изменению коэффициенту весов, то есть связи между отдельными нейронами. Если вес положительный — сигнал в нейроне усиливается, нулевой — нейроны не влияют друг на друга, отрицательный — сигнал в принимающем нейроне погашается.
Мы регулярно прибегаем к помощи алгоритмов — например, когда смотрим прогноз погоды, ищем билеты или просто хотим отдохнуть. Это такая же часть нашей жизни, как одежда и обувь, автомобили и смартфоны. Тем не менее искусственный интеллект, так глубоко проникший во все сферы нашей жизни, до сих пор может вызывать недоверие и страх. В проекте «ИИ спешит на помощь» мы рассказываем, на что способны современные технологии с использованием ИИ, где они приносят наибольшую пользу и почему не стоит бояться восстания машин. Материал подготовлен совместно с федеральным проектом «Искусственный интеллект» нацпроекта «Цифровая экономика».
Несмотря на невозможность практической реализации, именно тогда были придуманы новые алгоритмы, в том числе сверточные и рекуррентные: сверточные используются для классификации изображений, а рекуррентные — для анализа текста и машинного перевода. В журналах того времени писали, что роботы вот-вот заменят человека, стартапы обещали небывалую прибыль бизнесу, но нейросети все равно считались идеей, которая работает только на бумаге.
Всего за пару десятков лет искусственный интеллект, кажется, научился всему: от генерации текста и изображений до прогноза погоды, вождения автомобилей и обнаружения патологий на рентгеновских снимках. Тем не менее, в отличие от нашего мозга, созданный по его подобию ИИ неуниверсален — для решения конкретных задач нейросети постоянно изменяют и совершенствуют. Рассказываем, как они устроены, чем отличаются друг от друга и почему ни одна нейросеть не способна обойтись без человека.
В современном мире нейронные сети стали настоящим флагманом в области искусственного интеллекта, предоставляя невероятные возможности для обработки данных и решения сложных задач. Уникальность каждого типа нейронных сетей позволяет оптимизировать их для конкретных целей. Давайте пройдемся по ключевым видам нейронных сетей, которые активно формируют ландшафт современных технологических решений.
Однако без помощи человека нейросеть не справится ни с одной задачей. Алгоритм необходимо верно подобрать под конкретную ситуацию, обучить его, выявить ошибки, а затем доработать. Не существует и нейросетей, которые могут одновременно хорошо выполнять различные категории задач и самостоятельно определять, что нужно делать.