Как устроена нейросеть

0
25

Что такое нейросеть: как устроен человеческий мозг «в цифре»

Как обучают нейросети

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Разработчик нейронных сетей — это специалист, который создает архитектуру, а также решает теоретические и прикладные задачи систем искусственного интеллекта. Он, в частности, проектирует методики машинного обучения и ведет аналитическую работу в области специализированного программного обеспечения.

Само обучение бывает контролируемым и глубоким. В первом случае специалисты по работе с данными загружают для обучения нейросети помеченные наборы данных, которые заранее содержат правильный ответ. В процессе обучения нейросеть накапливает знания, а затем получает новые данные, чтобы построить уже свои предположения.

В последние годы нейронные сети прошли путь от простых сортировщиков картинок на смартфонах до помощников в решении глобальных задач в науке. Современные нейросети способны заменить или дополнить работу человека во всех случаях, когда решение нужно принимать на основе предыдущего опыта. «РБК Тренды» разбирался, как устроены и работают нейросети, как их обучают и в каких сферах применяют.

Слои нормализации решают эту проблему, выравнивая, нивелируя разницу во входных данных. Они вычисляют среднее значение и стандартное отклонение входных данных для мини-батча и нормализуют их, чтобы значения были в диапазоне от 0 до 1. Это помогает нейросети обучаться быстрее и лучше обобщать данные.

Неправильный выбор архитектуры может привести к провалу. Бессмысленно пытаться заставить сверточную сеть, предназначенную для изображений, распознавать речь. Входные данные — спектрограммы речи — имеют другую структуру по сравнению с изображениями, и свёрточные слои будут неэффективны для их обработки. В этом случае лучше применить рекуррентную сеть, которая может последовательно обрабатывать аудиоданные и учитывать неочевидные связи в естественной человеческой речи.

Правильная комбинация слоев и архитектур может значительно повысить производительность нейронной сети и качество результатов её работы. Различные типы нейронных сетей имеют свои особенности внутренней архитектуры, а что ещё важнее — та или иная архитектура лучше справляется с тем или иным типом задач. Вот пара примеров:

Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.

Распознавание и обработка естественного языка

Аналитики International Data Corporation подсчитали, что мировой рынок решений в сфере искусственного интеллекта будет расти в среднем на 18,6% ежегодно в период с 2022 по 2026 год. По мнению авторов исследования McKinsey, именно прикладной искусственный интеллект и внедрение машинного обучения стали двумя наиболее значимыми технологическими тенденциями на рынке ИИ. В 2022 году компании, занимающиеся генеративным искусственным интеллектом, привлекли $1,37 млрд — это почти столько же, сколько за предыдущие пять лет.

В материале попробуем просто рассказать о том, как устроена нейронная сеть, какие типы архитектуры нейросетей существуют и какую роль в работе сетки играют слои. Материал — для нетехнических специалистов. Понимание базы поможет чуть лучше понимать инженеров и разработчиков, а также, возможно, принимать более информированные бизнес-решения, связанные с внедрением разработок на основе ИИ.

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

ЧИТАТЬ ТАКЖЕ:  Технологии искусственного интеллекта решают какие задачи

Генеративно-состязательные сети (GAN) состоят из двух нейронных сетей — генератора и дискриминатора. Генератор использует слои для создания новых данных, а дискриминатор применяет слои для оценки реалистичности сгенерированных данных. Поэтому сетки, построенные на GAN, хорошо работают с задачами генерации новых данных — создания изображений или музыки.

В отличие от полносвязных и свёрточных слоев, которые обрабатывают каждый элемент входной последовательности отдельно, рекуррентные слои используют информацию о предыдущих элементах для обработки текущего. Основная идея рекуррентности в том, что на каждом шаге обработки последовательности слой получает текущий элемент и предыдущее внутреннее состояние. Он объединяет эту информацию, обновляет свое состояние и генерирует выходной элемент. Это позволяет им эффективно работать с последовательными данными, где важны зависимости между элементами.

Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.

Как работает нейронная сеть

Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.

Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.

При глубоком обучении специалист по работе с данными предоставляет нейросети только необработанные данные, а та самостоятельно извлекает функции и обучается независимо. Если результат неудовлетворительный, то цикл обучения повторяется снова, пока нейросеть не будет давать корректные ответы.

Пулинг также помогает выделить наиболее значимые признаки из данных, что делает модель более устойчивой к шуму и искажениям. Например, если изображение немного изменится (например, сдвинется или изменится освещение), слой пулинга все равно сможет распознать основные формы и объекты.

Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.

Нейронные сети имитируют работу человеческого мозга, чтобы обрабатывать и анализировать данные. Они обучаются на большом объёме информации, выявляя закономерности и связи между сущностями. Это позволяет им выполнять сравнительно сложные когнитивные задачи — распознавать изображения, обрабатывать естественный язык и прогнозировать сценарии развития событий в специфических областях.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь