Как сделать нейросеть на python с нуля

0
19

Как написать простую нейросеть на Python

Архитектура нейронных сетей

При создании своей нейросети на Python необходимо выбрать подходящую функцию активации в зависимости от задачи, которую вы хотите решить. Кроме того, важно убедиться, что функция активации выбрана правильно, чтобы избежать проблем, таких как затухание градиента.

В учебных целях очень часто применяют самую простейшую из них, линейную. Ее еще называют единичный скачок или жесткая пороговая функция. Выглядит в коде она следующим образом. Мы же будем применять более адекватную и подходящую функцию активатора, а именно сигмоид.

Затем нам понадобится веса для синапсов. Именно они будут выявлять взаимосвязь между входными данными и результатом. Сейчас просто запомните, что именно веса будут оказывать наибольшую роль в определении результата и чуть позже в коде мы воспользуемся популярным решением для инициализации весов. В частности, веса будут инициализироваться генератором случайных чисел. Это довольно важно, потому что если бы был способ найти идеальные начальные веса, то дальнейшее обучение сети просто не требовалось бы.

В последние годы нейронные сети стали одним из наиболее популярных методов для решения различных задач, таких как классификация изображений, прогнозирование временных рядов, обработка естественного языка, генерация контента и т.д. Они «умеют» извлекать признаки из данных и на основе этих признаков принимать решения, что делает их особенно полезными в сфере искусственного интеллекта.

Вторая переменная это Training Outputs. Она хранит в себе массив 1 на 4, и это наши ожидаемые выходные данные. Также не забываем транспонировать вторую переменную, чтобы ее содержание поменялось и было 4 на 1. Дальше нам надо инициализировать веса. Ранее я уже говорил, что мы будем это делать при помощи генератора случайных чисел. Чтобы и у вас, и у меня получались одинаковые случайные числа, давайте договоримся и укажем сид генератора в значении 1.

Конечно, после сигмоида мы никогда не получим такие значения, но и результат после обучения нашей нейронки сложно назвать хоть чем-то хотя бы близко похожим на то, что нам нужно. И происходит это потому, что метод обратного распространения подразумевает многократное обучение нейронной сети. В коде которого будет производиться регулирование в соответствии с уже известными алгоритмами выравнивания весов.

ЧИТАТЬ ТАКЖЕ:  В какой стране появился искусственный интеллект

Основы нейронных сетей

Рекуррентные нейронные сети – это тип нейронных сетей, который используется для работы с последовательными данными, такими как звуковые сигналы или текстовые данные. Рекуррентные слои в этих нейронных сетях позволяют нейронной сети запоминать информацию из предыдущих шагов и использовать ее для принятия решения на текущем шаге. Это позволяет рекуррентным нейронным сетям работать с данными разной длины и предсказывать последующие значения в последовательности.

Python является одним из самых популярных языков программирования для создания нейронных сетей, благодаря своей простоте и богатой экосистеме библиотек машинного обучения. В этой статье мы рассмотрим пошаговую инструкцию по созданию простой нейросети на Python, начиная с основных концепций нейронных сетей и заканчивая практическим созданием и обучением модели.

Архитектура нейронных сетей описывает структуру нейронной сети и определяет, как она будет обрабатывать входные данные и выдавать выходные значения. Существует несколько типов архитектур нейронных сетей, каждый из которых предназначен для решения определенных задач.

Кроме того, необходимо выбрать метод оптимизации для обучения нейронной сети. Оптимизатор используется для изменения весов нейронной сети в процессе обучения, чтобы минимизировать функцию потерь. Один из наиболее популярных оптимизаторов — это алгоритм стохастического градиентного спуска (SGD). Он обновляет веса нейронной сети в направлении, противоположном градиенту функции потерь.

И позже я об этом еще покажу и расскажу в коде. Сам подход к обучению нейросети, то есть подразумевает старт с непрозрачностью, правильной позиции в поисках правильной. При этом довольно важен тот факт, что начальные веса не могут быть полностью одинаковыми, иначе они так одинаковыми в процессе обучения и останутся. Ну а раз мы все равно не знаем, какие должны быть веса, и нельзя делать их одинаковыми, то идея взять случайные веса в общем случае выглядит очень даже хорошо. И как я уже ранее сказал, именно благодаря весам нейрон будет определять результат.

Когда нейронная сеть получает на вход некоторые данные, она проходит через несколько слоев, состоящих из нейронов. Каждый нейрон обрабатывает данные и выдает некоторый результат, который передается следующему слою нейронов. Чтобы нейронная сеть могла правильно работать, ей необходимо научиться извлекать признаки из данных, то есть определять, какие входные значения наиболее важны для принятия решения.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь