Искусственный интеллект кто

0
42

Искусственный интеллект

История

Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

Поначалу, под влиянием первых успехов, исследователи позволяли себе несколько опрометчивые заявления, которые впоследствии неоднократно ставились им в упрек. Так, например, в 1958 году американец Герберт Саймон, позже ставший лауреатом Нобелевской премии по экономике, заявил, что если бы машины допускались к международным соревнованиям, то в ближайшие десять лет они стали бы чемпионами мира по шахматам.

Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .

Могут ли машины стать умнее, чем люди? Нет, считает Жан-Габриэль Ганасия: это всего лишь миф, навеянный научной фантастикой. В своей статье он напоминает об основных этапах развития этой отрасли науки, о достижениях современной техники и об этических вопросах, все больше требующих к себе внимания.

Однако при ближайшем рассмотрении становится очевидно, что работа для людей не пропадает, а трансформируется, требуя новых навыков. Точно так же независимость человеческой личности и ее свобода не подвергаются неминуемой опасности из-за развития ИИ – при условии, однако, что мы останемся бдительными перед лицом вторжения технологий в частную жизнь.

Примечания

Прогресс замедлился в середине 1960-х годов. В 1965 году десятилетний мальчик одержал в шахматном матче победу над компьютером; в 1966 году в докладе, подготовленном по заказу Сената Соединенных Штатов Америки, говорилось о внутренних ограничениях, присущих машинному переводу. Около десяти лет пресса отзывалась об ИИ неодобрительно.

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

ЧИТАТЬ ТАКЖЕ:  Где скачать искусственный интеллект

В 1930-х годах британский и австрийский математики Алан Тьюринг и Курт Гёдель, а также другие математики пришли к выводу, что не существует универсального алгоритма для решения любых задач в некоторых важных математических областях. Существуют задачи, которые не решаются путём составления алгоритма, но доступны к решению человеком, так что был сделан вывод, что компьютеры по своей природе не могут делать то, что делают люди [1] .

С 2010 года мощность компьютеров позволяет сочетать так называемые большие данные (Big Data) с методами глубокого обучения (Deep Learning), которые основываются на использовании искусственных нейронных сетей. Весьма успешное применение во многих областях (распознавание речи и изображений, понимание естественного языка, беспилотный автомобиль и т.д.) позволяет говорить о возрождении ИИ.

Большие перспективы у применения искусственного интеллекта в робототехнике, так как это позволит в конечном итоге получить не только мыслящую и планирующую действия машину, но и выполняющую их. В конечном итоге это, в числе прочего, может наградить человечество машиной, сопоставимой по всем возможностям с человеком или даже превосходящей его [10] . Исследуются возможности искусственного интеллекта и в военной робототехнике [11] .

Искусственный интеллект (ИИ, англ. artificial intelligence, AI ) — свойство искусственных вычислительно-интеллектуальных систем выполнять задачи, традиционно считающиеся прерогативой человека, в первую очередь творческого характера, а также наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. Не следует путать искусственный интеллект с искусственным сознанием. Искусственные интеллекты, существующие на настоящий момент — весьма узкоспециализированные и чаще всего некомпетентны за пределами своей основной задачи.

И наконец, в противоположность некоторым утверждениям, машины не несут в себе экзистенциального риска для человечества, поскольку их автономия носит лишь технический характер и в этом смысле не соответствует цепочкам материальной причинности, идущим от информации к принятию решений. Кроме того, машины не самостоятельны в моральном плане, и потому, даже если иногда они сбивают нас с толку и вводят в заблуждение своими действиями, они все же не обладают собственной волей и подчиняются тем целям, которые мы перед ними ставим.

Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь