Содержание статьи
Искусственный интеллект в жизни человека
Разница между искусственным и естественным интеллектом
Нейросети моделируют работу нервной системы человека. Ее основная особенность — самообучаться с учетом предшествующего опыта. То есть нейронные сети раз за разом, выполняя другие функции, совершают меньшее число ошибок и вырабатывают свою систему. Нейросети — это не искусственный интеллект, но сейчас они активно захватили всеобщее внимание. Если сейчас компания или стартап заявляют о внедрении лучших решений, то с высокой долей вероятности их представители ведут речь о нейросетях. Эти программы — это математическая модель, работа которой основана на большом числе искусственных нейронов с исходными данными.
Поглощая огромное количество информации, роботы анализируют и используют полученные данные для прогнозирования. Так работают чат-боты, которые генерируют картинки, текст. Например, это машины, которые анализируют объекты на фотографии и описывают их, исходя из изучения других изображений в интернете.
Развитие ИИ происходит стремительно. Если десятилетия назад в этой области были заняты лишь некоторые специалисты, то сейчас проблема с профессионалами в области внедрения таких технологий станет еще острее. За последние пять лет спрос на специалистов в сфере ИИ увеличился до 74 процентов. Нехватка работников в этой сфере остро ощущается корпорациями. Об этом свидетельствуют многочисленные данные исследований, статьи по тематике.
В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).
В маркетинге часто нейросети и машинное обучение считают синонимами, хотя второе представляет процесс обучения нейронных сетей. Сначала возникло такое понятие, как искусственный интеллект. Затем внутри этой области знаний появились нейросети, совершенствование которых характеризуют машинным обучением.
Одна из наиболее осуществимых систем применения ИИ — эвристика, то есть сортировка информации по категориям, используя имеющиеся данные. Пример такой деятельности — анализ контрагентов при банковских операциях [7] . Ещё одна сфера, в которой искусственный интеллект необходим — самоорганизующиеся системы, то есть компьютерные системы, способные изменять себя согласно заданным параметрам, условиям окружающей среды или необходимым к выполнению задачам [9] .
Основные вызовы технологии ИИ
Ученые все чаще пишут в статьях о рисках внедрения машинного интеллекта в обычную и повседневную жизнь. Например, ученый Стивен Хокинг говорил о том, что создание машинного разума станет под силу человеку, однако этим процессом будет нанесен существенный вред. По словам Илона Маска и в соответствии с данными статистики с годами ИИ будет представлять большую угрозу чем ядерное оружие.
Если посмотреть на это по-другому, то для ИИ учеными был разработан свой тест. С помощью него определяют, насколько велики успехи компьютерных программ и насколько близка машина к протекающим в мозге людей процессам. Это определенный ориентир, эталон, модель, которую люди установили искусственно. При этом большинство ученых склоняются к тому, что машины в скором времени опередят по многим процессам человека.
Такой интеллект бывает двух типов. Узконаправленный или слабый справляется с ограниченным кругом дел. К числу лучших помощников человека относят Siri. Сильный ии теоретически разрешает любую задачу. Но таких технологий сейчас не существует. Это больше утопия, чем реальность.
После качества еще одной важной характеристикой является количество. Чтобы отличить одно животное от другого, роботам понадобится больше 2 дней. Для этого им придется проанализировать десятки тысяч лучших фотографий из интернета. В это же самое время ребенок проанализировал бы эти данные за несколько секунд. То же самое касается и написания текстов.
Искусственный интеллект справляется с выполнением дел, которые выполняет человек. Сравнивать же человеческий разум и искусственный интеллект можно только по некоторым параметрам. Принцип работы машины и человека схож. Это кодирование, хранение информации, анализ данных с предоставлением результатов. Самообучаться может разум человека и искусственный интеллект. Только люди используют одни алгоритмы, а роботы — другие. Мышление человека имеет много отличий от машин. Людям характерна эмоциональная окраска. ИИ не ориентирован социально и не находится в зависимости от влияния социума.
Информация об искусственном интеллекте стала распространяться после появления научного труда и статей Алана Тьюринга «Вычислительные машины и интеллект» в 1950 году. В этой статье идет речь о том, могут ли думать машины и как можно использовать их возможности для помощи людям. Через 6 лет состоялась первая конференция на эту тему в 1956 году. И Джоном Маккарти впервые был употреблен термин ИИ.