Что такое нейросети человека

0
19

Что такое нейросети человека

Сфера применения

Создавать контент для сайтов, социальных сетей и рекламных кампаний . Современные нейросети (например, ChatGPT и Stable Diffusion, доступные в РФ через условно-бесплатный сервис Fabula AI ) могут генерировать тексты, создавать логотипы, улучшать картинки и даже делать видео по текстовым описаниям.

Анализировать и планировать промоактивности. «Магнит» проверяет правильность выкладки в розничных точках. Искусственный интеллект анализирует наличие товаров на полке и контролирует остатки на складах. Автоматизация сокращает время на проверку почти в 4 раза. Также компания использует нейросети для анализа и планирования промо-мероприятий . Алгоритмы подбирают ассортимент, глубину скидки и тип акции.

Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Искусственный интеллект, машинное обучение и нейросети — это не синонимы, но тесно связанные понятия. Искусственный интеллект — это область знаний, которая изучает и разрабатывает системы, имитирующие поведение человека. Она включает данные, программы и технологии. Машинное обучение — это способ формирования искусственного интеллекта. Нейросеть — это один из методов машинного обучения, в основе которого лежит математическая модель, имитирующая мозг.

Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.

Обработка естественного языка

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.

Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.

Оптимизировать затраты на медиапланирование. Volkswagen в Германии формирует медиаплан , исходя из рекомендаций нейросети. Это помогло оптимизировать затраты на медийную рекламу. Например, алгоритм рекомендовал радио для продвижения новых моделей автомобилей. В Volkswagen считали этот медиа-канал устаревшим, но кампания оказалась эффективной.

ЧИТАТЬ ТАКЖЕ:  Как запустить обучение нейросети на gpu на windows

Создавать голосовые помощники и чат-боты для работы с клиентами. Ответы голосового помощника Алисы формирует нейросеть YaLM, разработанная «Яндексом». «Мегафон» также создал на основе алгоритмов нейросети программу для обзвона клиентов , которую использует самостоятельно и продает другим компаниям.

Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.

Нейросети в маркетинге

Нейросети решают задачи, которые традиционно выполняет человеческий интеллект: распознают и генерируют изображения, понимают смысл письменной и устной речи, анализируют данные и строят прогнозы. Для обычной программы это слишком сложно, так как нет однозначного или полностью известного алгоритма, который приводит к результату.

Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.

Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.

Таргетологи «Тинькофф Журнала» сгенерировали десять картинок для баннерной рекламы. Основная идея эксперимента — быстро проводить A/B-тестирование без привлечения дизайнеров. Все арты отличаются по стилю и содержанию. У дизайнера на отрисовку уйдет несколько дней, нейросеть справилась за несколько часов.
Свой художник в кармане: 8 нейросетей для генерации картинок

Например, логистической компании нужно построить самые быстрые маршруты. Если в качестве исходных данных будет использована информация о маршрутах, которые строили сами водители, нет смысла подключать нейросеть. При выборе они будут опираться на другие факторы. Если использование нейросетей всё же уместно, то для решения основной задачи может использоваться не одна нейросеть, а сразу несколько. В этом случае большая задача разбивается на много мелких.

Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь