Что может делать нейросеть

0
13

Что такое нейронная сеть

Как работают нейронные сети?

Stable Diffusion — инструмент от группы Stability.Ai. Нейросеть создает картинку по словесному описанию. Она использует в работе кодировщик текста, который описывает каждое слово с помощью списка чисел или вектора. Генератор изображения обрабатывает эти данные и преобразует в пиксельную картинку. Нейросеть уже используют для создания контента — в телеграм-канале АктаНейро можно посмотреть, как Stable Diffusion генерирует изображения к новостям.

Автор книги «Before the Brand: Creating the Unique DNA of an Enduring Brand Identity» Алисия Перри подсчитала, что 98% английского словаря состоит из названий брендов. Придумать оригинальное название для бизнеса, которое понравится пользователям, непросто. А после этого еще нужно выбрать цвета, логотип и придумать фирменный стиль. Принять решения и поставить задачу дизайнерам предпринимателю поможет искусственный интеллект.

Инструмент создал разработчик из Google Дэн Мотценбекер на проекте AI Experiments от Google Creative Lab. Нейросеть работает на базе платформы Google Cloud Vision API и переводчика Translate API. Эти технологии позволяют с высокой точностью распознавать объекты на картинках и выдавать машинный перевод. Нейросеть считывает форму предмета, ищет совпадения, распознаеёт вещь и переводит название на выбранный язык. Сервис знает немецкий, французский, испанский, итальянский, китайский, японский, корейский, датский языки и хинди. Иногда инструмент ошибается, но, как и любая технология машинного обучения, учится на своих ошибках и совершенствуется с каждым запросом.

Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.

При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.

Нейронные сети помогают компьютерам принимать разумные решения с ограниченным участием человека. Они могут изучать и моделировать отношения между нелинейными и сложными входными и выходными данными. Например, нейронные сети могут выполнять следующие задачи.

Нейронная сеть медленно накапливает знания из этих наборов данных, которые заранее дают правильный ответ. После обучения сеть начинает делать предположения об этническом происхождении или эмоциях нового изображения человеческого лица, которое она никогда раньше не обрабатывала.

Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.

ЧИТАТЬ ТАКЖЕ:  Как сделать искусственный интеллект в играх

Обобщать и делать выводы

Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.

Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:

С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.

Нейросети научились создавать впечатляющие иллюстрации, имитировать картины известных мастеров и фотореалистичную графику. Изображения можно добавлять в презентации, посты в соцсетях или использовать для вдохновения. Выгоревшие дизайнеры, иллюстраторы и SMM-специалисты оценят этот инструмент.

Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.

Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь