Искусственный интеллект кто создал

0
39

Искусственный интеллект: между мифом и реальностью

Исследование ИИ

Искусственный интеллект (ИИ, англ. artificial intelligence, AI ) — свойство искусственных вычислительно-интеллектуальных систем выполнять задачи, традиционно считающиеся прерогативой человека, в первую очередь творческого характера, а также наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. Не следует путать искусственный интеллект с искусственным сознанием. Искусственные интеллекты, существующие на настоящий момент — весьма узкоспециализированные и чаще всего некомпетентны за пределами своей основной задачи.

В 1930-х годах британский и австрийский математики Алан Тьюринг и Курт Гёдель, а также другие математики пришли к выводу, что не существует универсального алгоритма для решения любых задач в некоторых важных математических областях. Существуют задачи, которые не решаются путём составления алгоритма, но доступны к решению человеком, так что был сделан вывод, что компьютеры по своей природе не могут делать то, что делают люди [1] .

ИИ подразумевает не только рациональный анализ и воспроизведение при помощи компьютеров большинства аспектов интеллекта – может быть, лишь за исключением юмора. Машины значительно превышают наши когнитивные способности в большинстве областей, что заставляет нас опасаться некоторых этических рисков. Это риски трех видов: дефицит работы, которая вместо людей будет выполняться машинами; последствия для независимости человека и, в частности, для его свободы и безопасности; опасения, что более «умные» машины будут доминировать над людьми и станут причиной гибели человечества.

Однако при ближайшем рассмотрении становится очевидно, что работа для людей не пропадает, а трансформируется, требуя новых навыков. Точно так же независимость человеческой личности и ее свобода не подвергаются неминуемой опасности из-за развития ИИ – при условии, однако, что мы останемся бдительными перед лицом вторжения технологий в частную жизнь.

Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .

Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :

Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .

С конца 1990-х годов ИИ стали объединять с робототехникой и интерфейсом «человек – машина» с целью создания интеллектуальных агентов, предполагающих наличие чувств и эмоций. Это привело, среди прочего, к появлению нового исследовательского направления – аффективных (или эмоциональных) вычислений (affective computing), направленных на анализ реакций субъекта, ощущающего эмоции, и их воспроизведение на машине, и позволило усовершенствовать диалоговые системы (чат-боты).

Примечания

Искусственный интеллект может применяться как в качестве партнёра в играх (например, шахматах), так и в более серьёзных задачах. Например, с 1990-х годов ИИ используется для распознания речи, что повышает удобство различных сервисов. Способен искусственный интеллект и распознавать живую речь, для чего недостаточно просто распознавать отдельные слова. Ещё один вариант использования — компьютерное зрение. Мир, в котором мы находимся имеет три измерения, в то время как устройства ввода визуальной информации, что у человека, что у машины, воспринимают только двухмерную картинку. Задача ИИ в данном случае — обработать имеющееся изображение для распознания объектов на нём. Также ИИ используются для так называемых «экспертных систем» — систем анализа данных в определённой сфере знаний или деятельности, действующей эффективнее, чем человек за счёт высокой скорости обработки [3] [7] [8] .

ЧИТАТЬ ТАКЖЕ:  Учимся с удовольствием: чему можно обучиться во взрослом возрасте

Методы машинного обучения позволяют одним автоматам распознавать устную речь и записывать ее подобно секретарям-машинисткам прошлых лет, а другим – точно идентифицировать лица или отпечатки пальцев среди десятков миллионов других и обрабатывать тексты, написанные на естественных языках. Благодаря этим же методам самостоятельно движутся автомобили, компьютеры лучше врачей-дерматологов диагностируют меланомы по фотографиям родинок, сделанных с помощью сотовых телефонов, роботы воюют вместо людей; а конвейеры на заводах все больше автоматизируются.

Искусственный интеллект — это наука и технология создания интеллектуальных машин, в первую очередь интеллектуальных компьютерных программ. Интеллект в данном случае — это вычислительная способность достигать целей в мире, присущая человеку, многим животным и некоторым машинам. При этом до сих пор в научном сообществе нет чёткого понимания, какие вычислительные функции считать интеллектом в силу понимания только части из них; по этой причине точного общепринятого определения интеллекта, не завязанного на интеллект человека, не существует. Также из-за того, что интеллект — это сложное понятие, состоящее из множества свойств и функций, некоторые из которых до сих пор не поддаются вычислительным машинам, невозможно чётко отделить «интеллектуальные» машины от «не интеллектуальных»; многие из вычислительных систем, созданных для выполнения той или иной функции можно назвать «в какой-то мере интеллектуальными» [1] .

В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).

В 1956 году Джон Маккарти впервые в истории ввёл в оборот термин «искусственный интеллект» (англ. artificial intelligence ). Год спустя Аллен Ньюэлл, Герберт Саймон и Клиффорд Шоу разработали первую программу, попавшую в эту категорию. Она предназначалась для игры в шахматы и в отличие от предыдущих основывалась на эвристике, то есть не имела точных теоретических оснований. В 1960 году ими же была разработана программа для решения головоломок, основанная на тех же принципах [3] .

И наконец, в противоположность некоторым утверждениям, машины не несут в себе экзистенциального риска для человечества, поскольку их автономия носит лишь технический характер и в этом смысле не соответствует цепочкам материальной причинности, идущим от информации к принятию решений. Кроме того, машины не самостоятельны в моральном плане, и потому, даже если иногда они сбивают нас с толку и вводят в заблуждение своими действиями, они все же не обладают собственной волей и подчиняются тем целям, которые мы перед ними ставим.

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

Исследования не прекратились, но пошли в новых направлениях. Ученые заинтересовались психологией памяти, механизмами понимания, которые они пытались имитировать на компьютере, и ролью знаний в мыслительном процессе. Это привело к появлению значительно развившихся в середине 1970-х годов методов семантического представления знаний, а также к созданию экспертных систем, названных так потому, что для воспроизведения мыслительных процессов в них использовались знания квалифицированных специалистов. В начале 1980-х годов на экспертные системы возлагались большие надежды в связи с широкими возможностями их применения, например, для медицинской диагностики.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь