Содержание статьи
Искусственный интеллект уже к 2027 году может превзойти людей
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства Российской Федерации Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб.
Искусственный интеллект (ИИ), базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад. Но за короткое время он успел стать технологией, оказывающей заметное влияние на развитие экономики и формирование новых рынков.
Точное определение AGI еще не сложилось, но большинство экспертов определяет его, как ИИ, который соответствует или превосходит человеческие возможности в широком спектре когнитивных задач. Именно это, по мнению директора управления экспериментальных систем машинного обучения SberDevices Сергея Маркова, отличает AGI от существующих сегодня нейросетевых моделей. «Пчела найдет оптимальный маршрут в улей быстрее и лучше, чем это сделал бы человек, хотя в ее нервной системе несколько сотен тысяч нейронов, а у человека восемьдесят шесть миллиардов. Шахматная программа или даже калькулятор в решении конкретной задачи тоже превосходит человека. Уже сегодня можем сейчас взять почти любую простою задачу и сделать систему, которая будет лучше человека в ее решении. А вот AGI или общий искусственный интеллект — это универсальная система, которая сможет решать неизвестные ей ранее задачи. Сила человеческого интеллекта именно в том, что мы умеем решать задачи, с которыми ранее не сталкивались. И к созданию таких систем мы сейчас только приближаемся» , — отметил Марков в своем выступлении на конференции Turbo ML Conf.
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства РФ Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб. Главным вызовом для большинства исследователей и разработчиков ИИ стал вопрос создания AGI (Artificial general intelligence) — так называемого общего искусственного интеллекта. Точное определение AGI еще не сложилось, но большинство экспертов определяет его как ИИ, который соответствует или превосходит человеческие возможности в широком спектре когнитивных задач. Именно это, по мнению директора управления экспериментальных систем машинного обучения SberDevices Сергея Маркова, отличает AGI от существующих сегодня нейросетевых моделей. «Пчела найдет оптимальный маршрут в улей быстрее и лучше, чем это сделал бы человек, хотя в ее нервной системе несколько сотен тысяч нейронов, а у человека восемьдесят шесть миллиардов. Уже сегодня мы можем взять почти любую простую задачу и сделать систему, которая решит ее лучше человека. А вот AGI, или общий искусственный интеллект, — это универсальная система, которая сможет решать неизвестные ей ранее задачи. И к созданию таких систем мы сейчас только приближаемся», — отмечает Марков. Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году — в 57%, к 2100 году — в 88%. При этом руководитель научных исследований обработки естественного языка в лаборатории T-Bank AI Research Даниил Гаврилов считает, что общий ИИ может появиться раньше. Он отмечает, что и аналитики, и разработчики, делая прогноз в 2021 году о качестве нейросетевых моделей к 2022 году, ошиблись более чем в два раза в меньшую сторону. «Нам очень тяжело думать об экспоненциальном росте, а именно так сейчас развиваются большие языковые модели. Такая скорость тяжело укладывается в голове, поэтому те предсказания, которые мы слышали, оказались более пессимистичны, чем реальность. Если экстраполировать текущую скорость развития ИИ, то уже к 2027 году мы получим если не полноценный AGI, то что-то качественно иное относительно того, что мы имеем сейчас», — считает Гаврилов. Согласно данным Epoch AI, сегодня существуют несколько разнонаправленных трендов, которые будут влиять на скорость развития ИИ в ближайшие годы. Так, производительность «железа», которое требуется для обучения и работы нейросетей, удваивается каждые 2-3 года. А переход на новые тензорные ядра в графических процессорах NVIDIA привел к одномоментному 10-кратному росту производительности. Среди негативных факторов, тормозящих развитие ИИ, эксперты Epoch AI выделяют дефицит данных для обучения ИИ. Согласно их прогнозам языковые модели полностью израсходуют запас публичных данных, размещенных в интернете, между 2025 и 2032 годами. Для дальнейшего обучения нейросетевых моделей потребуется использовать синтетические данные, то есть сгенерированные ИИ. Таким образом, искусственный интеллект начнет обучать себя сам. А вот к каким последствиям это приведет, сегодня не может предсказать ни один эксперт.
Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году в 57%, к 2100 году в 88%.
Искусственный интеллект, базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад, но за короткое время успел стать сквозной технологией, оказывающей огромное влияние на развитие экономики и формирование новых рынков.
При этом руководитель научных исследований обработки естественного языка в лаборатории T-Bank AI Research Даниил Гаврилов считает, что общий ИИ появится раньше. Он отметил, что и аналитики, и разработчики, делая прогноз в 2021 году относительно качества нейросетевых моделей к 2022 году, ошиблись более чем в два раза, причем, в меньшую сторону. «Нам очень тяжело думать об экспоненциальном росте, а именно так сейчас развиваются большие языковые модели. Такая скорость тяжело укладывается в голове, поэтому те предсказания, которые мы слышали оказались более пессимистичны, чем реальность. Если экстраполировать текущую скорость развития ИИ, то уже к 2027 году мы получим, если не полноценный AGI, то что-то качественно иное относительно того, что мы имеем сейчас», — считает Гаврилов. Согласно данным Epoch AI, сегодня существуют несколько разнонаправленных трендов, которые будут влиять на скорость развития ИИ в ближайшие годы. Так производительность «железа», которое требуется обучения и работы нейросетей, удваивается каждые 2,3 года. А переход на новые (FP16) тензорные ядра в графических процессорах NVIDIA привел к одномоментному 10-кратному росту производительности. Объем вычислений, используемых для обучения нейросетевых моделей, с 2010 по 2024 ежегодно увеличивался в 4-5 раз. Такой рост наблюдается в новых больших языковых моделях (LLM) всех ведущих компаний. Алгоритмический прогресс в производительности LLM происходит со скоростью эквивалентной удвоению вычислительной мощности каждые 5-14 месяцев. То есть ИИ-алгоритмы становятся более совершенными и производительными. Среди негативных факторов, тормозящих развитие ИИ, эксперты Epoch AI отметили рост стоимость LLM. За последние восемь лет стоимость обучения новейших ИИ-моделей росла в 2-3 раза в год, а к 2027 году стоимость крупных LLM превысит миллиард долларов. Также сдерживающим фактором является дефицит данных для обучения искусственного интеллекта. Запас публичных текстов, созданных человечеством, оценивается примерно в 300 триллионов токенов. Если актуальные тенденции сохранятся, то языковые модели полностью используют этот запас между 2025 и 2032 годами (под токенами подразумевается последовательность текстовых символов — слов или отдельных знаков — ред.). В дальнейшем для дальнейшего обучения нейросетевых моделей потребуется использовать синтетические данные, то есть сгенерированные ИИ. Таким образом искусственный интеллект начнет обучать себя сам, но как это отразится на качестве и характере обучения пока неизвестно. В любом случае аналитики считают, что 2027-2030 года станут рубежом, когда станет ясно, насколько человечество приблизилось к созданию общего искусственного интеллекта. Среди экспертного сообщества нет сомнений, что создание AGI вызовет мощные технологические, экономические и социальные изменения в обществе.