Содержание статьи
Искусственный интеллект на производстве: какие задачи можно доверить нейросетям
Другой пример — система оптимизации маршрутов внутризаводского транспорта на основе ИИ, внедренная на «Магнитогорском металлургическом комбинате». Система в реальном времени анализирует загруженность цехов и оптимизирует маршруты движения погрузчиков и самосвалов. В результате удалось сократить пробег транспорта на 7% и снизить расход топлива на 5%.
Machine learning в перспективе освободит человека от выполнения рутинных операций и сделает его труд более эффективным. Благодаря этому жизнь станет легче, а компьютеры – ещё умнее. Несмотря на большие успехи в области искусственного интеллекта, современное машинное обучение и другие подходы пока не могут заменить человеческий интеллект. Модели занимаются статистическим обобщением свойств объектов, но помимо общих характеристик также существуют особенности, которые можно определить только методом «ручного» анализа. На данный момент это единственная возможность выявлять единичные (уникальные) признаки, распознавать сложные объекты и новые явления во всей их полноте.
Технологии компьютерного зрения активно применяются для автоматизации контроля качества. Так, на заводе «РТ-Техприемка» (входит в Ростех) внедрена система автоматического контроля качества стали для авиационной промышленности на основе ИИ. Система анализирует изображения металлических листов и выявляет даже микроскопические дефекты с точностью до 97%. Это позволило ускорить процесс контроля в 6 раз по сравнению с ручной проверкой.
Таким образом, искусственный интеллект становится ключевым инструментом повышения эффективности предприятий. При грамотном внедрении эти технологии позволяют существенно оптимизировать бизнес-процессы, сократить издержки и повысить качество продукции. Однако говорить о полной замене человека пока очень преждевременно. ИИ — это прежде всего умный помощник и партнер, берущий на себя рутину и высвобождающий наши силы для подлинно творческой и осмысленной деятельности. Главная задача — выстроить гармоничное сотрудничество естественного и искусственного интеллекта, которое поднимет наши коллективные способности на новую высоту. Лишь объединив сильные стороны человека и ИИ, мы сможем эффективно решать глобальные проблемы и идти к более совершенному будущему.
ИИ активно применяется для оптимизации логистических процессов. Например, ПАО «НЛМК» внедрило систему компьютерного зрения для контроля погрузки руды в вагоны. Нейросеть анализирует изображения с камер и определяет объем и качество загруженной руды. Это позволило увеличить объем перевозимой руды на 2% и сократить простои вагонов на 3%.
При обработке массивов информации нет описания или меток объектов, алгоритм должен самостоятельно выявлять закономерности, взаимосвязи и зависимости в данных. Обучение без учителя применяется для поиска похожих текстов, изображений и документов, визуализации и выявления аномалий.
Другой пример — система компьютерного зрения для контроля качества сварных швов, разработанная компанией «ВидеоМатрикс» для ПАО «Северсталь». Нейросеть анализирует рентгеновские снимки сварных соединений и с высокой точностью выявляет дефекты. Внедрение системы позволило сократить количество пропущенных дефектов на 30% и повысить производительность контроля на 40%.
Технологии ИИ находят применение и в сфере управления персоналом промышленных предприятий. Так, компания «Сибур» внедрила систему прогнозирования текучести кадров на основе машинного обучения. Алгоритм анализирует более 100 параметров по каждому сотруднику и с точностью до 85% прогнозирует вероятность его увольнения в ближайшие 3 месяца. Это позволяет HR-службе своевременно принимать меры по удержанию ценных специалистов.
По мнению доктора физико-математических наук, профессора МФТИ, специалиста в области машинного обучения Константина Воронцова, интеллектуальный анализ данных в целом основывается на подходах и методах машинного обучения. ML занимается построением математических моделей для обобщения информации, а анализ данных как прикладная дисциплина позволяет решать конкретные практические задачи. Модели помогают исследовать и обрабатывать гигантские потоки информации, выявлять закономерности.
В медицине machine learning помогает анализировать данные различных исследований состояния здоровья пациента. Умные системы на базе ML могут по рентгеновскому снимку выявлять патологии или предсказывать вероятность наличия какого-либо заболевания по совокупности результатов анализов.
Другой пример — внедрение ИИ-системы для управления доменными печами на Магнитогорском металлургическом комбинате. Нейросеть анализирует более 1000 параметров работы печи и выдает рекомендации по корректировке технологического режима. Это позволило снизить расход кокса на 5 кг на тонну чугуна и повысить производительность на 2,5%.
Машинное обучение активно используется во многих отраслях экономики. Например, в бизнесе широко применяются модели для предсказания поведения клиентов, создания рекомендательных систем, кластеризации аудитории для настройки показов рекламы (объединение людей в группы по схожим интересам, возрасту или социальному положению). Например, такой метод, как анализ временных рядов, необходим для глубокого понимания происходящих бизнес-процессов, в частности, динамики закупок и продаж товаров, посещаемости сайта и охвата пользователей.