С чего начинать учить нейросети

0
26

Обучение нейросети: методы и алгоритмы

Типы обучения нейросетей

Отдельно стоит рассмотреть такой метод, как обучение с подкреплением. Это разновидность обучения без учителя, поскольку здесь также не используются помеченные данные. Суть метода заключается во взаимодействии сети с окружающей средой и получении сигналов обратной связи в виде поощрений и наказаний. Нейросеть учится выполнять такие действия, которые со временем приведут к максимальному вознаграждению.

Понятие машинного обучения неразрывно связано с нейросетями. Нейронная сеть является методом в области искусственного интеллекта, который учит компьютеры работать с данными так же, как человеческий мозг. Важно понимать, что нейросети — это не мыслящие объекты, наделенные сознанием. Это сложнейшая база данных с огромным количеством формул.

Метод обучения с учителем ( supervised learning) аналогичен получению знаний в школе, где нейросеть выступает в качестве ученика, а человек — в роли преподавателя. Роль учителя заключается в том, чтобы подать на вход модели исходные данные и их «расшифровку » . По аналогии с математическими задачами это будет «вопрос » и «правильный «ответ » (метка). Например, при обучении задаче классификации изображений каждой отдельной картинке будет присвоена метка, означающая класс изображения (например, кошка или собака на фото). Так происходит настройка параметров для минимизации ошибок между собственными предположениями и « правильными ответами» (метками). Сопоставляя их из раза в раз, нейронная сеть б удет самос тоятельно обучаться отвечать и на последующие запросы правильно уже без помощи человека.

Машинное обучение (Machine Learning или сокращенно ML) — одно из самых сложных и перспективных направлений развития искусственного интеллекта (ИИ). Фактически оно представляет собой набор приемов, алгоритмов и методов, позволяющих ИИ учиться и решать задачи не в строгих рамках, заданных программой, а на базе постоянного совершенствования знаний и накопления опыта. Именно таким образом в течение жизни учимся и мы с вами.

Обучение с учителем используется для нейросетей , которые в дальнейшем будут решать задачи классификации: получать на входной слой большой объем данных и разделять информацию по заданным категориям. Этот механизм лежит в основе разных функций: модель может в будущем специализироваться и на генерации текста или продолжении предложений (нейронная сеть LSTM), и на идентификации и классификации картинок (сверточная нейронная сеть CNN). Кроме того, обучение с учителем позволяет модели успешно работать с прогнозами: оценивать динамику спроса на товар и менять цену и другие количественные характеристики для максимизации выручки или строить прогноз на бирже.

Главная проблема такого формата обучения — необходимость сбора и обработки огромных массивов информации на соответствующих высоких мощностях. Это длительный, дорогостоящий и технически сложный процесс, позволить себе который могут только крупные компании, не говоря уже о частных лицах. Кроме того, обучение с учителем подходит далеко не для всех типов данных. Оно предполагает, что в дальнейшем система будет работать только с информацией, аналогичной обучающему датасету, иначе эффективность ее функционирования точно предсказать невозможно.

Без учителя

Для того чтобы обучение с подкреплением было результативно, важно пройти много предварительных тренировок. Долгий период развития навыков модели и необходимость большого количества примеров называют главными минусами этого формата. Если в будущей работе нейросеть столкнется с незнакомой ситуацией, то реакция будет непредсказуема.

ЧИТАТЬ ТАКЖЕ:  Какие могут быть нейросети

Главной особенностью алгоритма является вычисление обновления веса, выполняемое с помощью знака градиента, который указывает направление корректировки. Градиент представляет собой вектор, показывающий направление наибольшего увеличения функции. Он используется для обновления параметров модели с целью уменьшения значения функции ошибки. Алгоритм упругого распространения позволяет адаптировать скорость обучения отдельно для каждого веса. Если знак градиента не меняется, он увеличивает скорость обучения, а если наоборот — уменьшает. Такая регулировка помогает алгоритму гибко перемещаться по весовым пространствам со сложной многомерной архитектурой, быстрее и надежнее находить оптимальные решения.

При этом обучение с подкреплением рассчитано не только на успешное прохождение игр. Нейросети , подготовленные к самостоятельной работе таким способом, могут в дальнейшем управлять транспортом в качестве автопилота или выступать техподдержкой, получая положительную обратную связь за каждый верно решенный запрос.

Нейросети , прошедшие обучение без учителя, не хуже предыдущих решают задачи кластеризации. Деление большого количества данных на группы способна совершить каждая обучающаяся модель, а далее с уже первично отсортированными сведениями могут работать люди или более тонко настроенные модели. Помимо задач группировки, нейронные сети умеют определять связи в данных. Этот механизм часто используется в маркетинге: анализируя историю покупок, искусственный интеллект предполагает, какие товары и услуги дополнительно предложить этому же человеку. Детектирование аномалий — еще одна профильная задача самостоятельного машинного обучения, решаемая автокодировщиком Autoencoder.

У нейросетей другая логика работы. Им дают большой массив правильно решенных задач. В нашем примере — это, скажем, тысяча чертежей домов с уже прописанными площадями. После этого нейронной сети дают возможность самой решить подобную задачу. Она начинает угадывать, какой ответ от нее хотят получить. Отдельный алгоритм подсказывает ей, правильно она справилась с решением или нет. Со временем нейросеть учится угадывать все лучше и лучше, формирует некие связи внутри своей структуры, которые обеспечивают полезный результат.

Современные нейросети с легкостью и за считанные секунды анализируют художественный текст, создают изображения, поддерживают живой диалог, пишут программный код и многое другое по запросу пользователя. Однако для того, чтобы эти действия правильно и быстро выполнялись, нейронная сеть проходит трудоемкое обучение, вне зависимости от размера входной задачи и количества нейронов в сети. Для результативной работы модели в будущем необходимо заранее подготовить наборы обучающих данных, рассчитать возможные отклонения от точных решений и подобрать весовые коэффициенты для каждого из нейронов.

Прохождение игр — часто встречающаяся задача, которую решает обучение с подкреплением. Так, например, алгоритм Q-обучения (Q-learning) часто используется в играх — например, для тренировки агента прохождению знакомой всем «Змейки » . Другой пример — нейросетевая модель AlphaGo, которая обучена играть в го на уровне мировых чемпионов.

Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь