Содержание статьи
- 1Нейросеть: в чём разница между Batch и Epoch
- 1.1Как устроена нейросеть
- 1.2Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.
- 1.3Нейросеть — аналог мозга?
Нейросеть: в чём разница между Batch и Epoch
Как устроена нейросеть
Действительно, в последнем примере общее количество мини-пакетов составляет 40 000, но это верно только в том случае, если пакеты выбраны без перетасовки обучающих данных или выбраны с перетасовкой данных, но без повторения. В противном случае, если в течение одной эпохи мини-пакеты создаются путем выбора обучающих данных с повторением, у нас могут быть некоторые точки, которые появляются более одного раза в одну эпоху (они появляются в разных мини-пакетах в одну эпоху), а другие — только один раз. Таким образом, общее количество мини-партий в этом случае может превысить 40 000.
Каждый шаг включает использование модели с текущим набором внутренних параметров для прогнозирования некоторых выборок, сравнение прогнозов с реальными ожидаемыми результатами, вычисление ошибки и использование ошибки для обновления внутренних параметров модели.
Обычно создаются линейные графики, которые показывают эпохи вдоль оси x как время, а также ошибки или навыки модели по оси y. Эти графики иногда называют кривыми обучения. Эти графики могут помочь определить, является ли модель чрезмерно изученной, недостаточно изученной или подходящей для обучающего набора данных.
Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.
в современных подходах к обучению deeeep я почти всегда сталкиваюсь с тем, что люди сохраняют свои модели после некоторого количества эпох (или некоторого периода времени), визуализируя какие-то показатели производительности для оценки следующих значений гипер-параметров, после чего они проводят свои эксперименты для следующих эпох. Таким образом, мы можем назвать эту процедуру «мини-эпохальным стохастическим глубоким обучением». Спасибо.
В мире искусственных нейронных сетей эпоха (англ. epoch) — это один цикл обучения на массиве данных. Обучение нейронной сети обычно занимает много эпох. Проще говоря, если мы снабжаем нейронную сеть обучающими данными в различных паттернах на протяжении более чем одной эпохи, мы ожидаем улучшения генерализации, когда даем ей свежий ненаблюдаемый вход (тестовые данные).
Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.
Большое вам спасибо за то, что написали простым для понимания способом. Кроме того, попробуйте добавить фотографии, график или схематическое представление для представления вашего текста. Как я видел здесь, вы привели один пример, он делает многие вещи очень ясными. В каком-то предыдущем посте вы также добавили график…
Сейчас я нахожусь в середине изучения практического машинного обучения, и часть 2 в главе 11 я не могу понять значение пакетной обработки. Сначала я думаю, что нейронная сеть должна обучаться по образцу один за другим. Но они сказали “партия”, и я не могу понять на земле.
Но ваша статья дает мне хорошее представление о партии.
Я полностью понимаю вас только по одному вопросу.
Как я могу использовать метод градиента с пакетной обработкой?
Я имею в виду, что в одном примере это понятно.
Но с пакетной обработкой я не понимаю, как оценить ошибку.
Спасибо.
Число эпох традиционно велико, часто сотни или тысячи, что позволяет алгоритму обучения работать до тех пор, пока ошибка модели не будет достаточно сведена к минимуму. Вы можете увидеть примеры количества эпох в литературе и в учебных пособиях, установленных на 10, 100, 500, 1000 и более.
Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.
Еще раз спасибо за отличный пост в блоге. Для данных временных рядов в LSTM имеет ли смысл когда-либо иметь размер пакета больше одного?
Я искал и искал, и я не мог найти ни одного примера, где размер пакета больше одного, но я также не нашел никого, кто сказал бы, что это не имеет смысла.
Когда значение размера партии задано как единица, for-loop содержит уровень, который позволяет ему пробежаться по заданной выборке за одну партию. Определение того, сколько эпох должна выполнить модель для обучения, зависит от нескольких параметров, связанных как с данными, так и с целью модели. Чтобы преобразовать эту процедуру в алгоритм, обычно требуется глубокое понимание данных.
Нейросеть — аналог мозга?
В протоколе Ethereum (ETH), например, эпоха — это время, необходимое для завершения 30 000 блоков на блокчейне. Продолжительность эпохи определяется темпом, с которым обрабатываются транзакции и достигаются соглашения, однако темп остается равномерным, с продолжительностью эпохи примерно в 100 часов.
Когда полный массив данных передается вперед, а затем назад через нейронную сеть, это называется эпохой. Мы разбиваем эпоху на несколько меньших партий, потому что одна эпоха слишком велика, чтобы отправить на компьютер все сразу.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
Еще раз спасибо за отличный пост в блоге. Для данных временных рядов в LSTM имеет ли смысл когда-либо иметь размер пакета больше одного?
Я искал и искал, и я не мог найти ни одного примера, где размер пакета больше одного, но я также не нашел никого, кто сказал бы, что это не имеет смысла.
спасибо за вашу замечательную статью, и у меня есть вопрос
если у меня есть следующие настройки и я использую функцию fit_generator
эпохи =100
данные=1000 изображений
партия = 10
шаг_пер_почты = 20
я знаю, что должен установить значение step_per_epochs = (1000/10)= 100, но если я установлю его равным 20
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Большое вам спасибо за ваше точное объяснение. Если все выборки перемешиваются в конце каждой эпохи, возможно ли, что мы найдем в наборах данных один образец, который будет оцениваться так много раз, а некоторые могут вообще не оцениваться? Или можно ли сделать так, чтобы один раз оцененный образец не подвергался повторной оценке?
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.