Содержание статьи
Нейронные сети на Python: как всё устроено
Курс от GeekBrains для освоения Python и последующей работы с нейросетями
Такое возможно благодаря применению математических матриц. Они представляют собой таблицы, состоящие из строк и столбцов, на пересечении которых находятся числа – элементы матрицы. Для простоты создадим модель одного нейрона, имеющего три источника информации и один выход. Цель – обучить нейронную сеть решать задачу, представленную ниже на изображении. Тренировочным набором будут примеры с первого по четвертый.
Рассмотрим пример создания спам-детектора. Вы можете создать его, основываясь на интуиции и вручную подбирая правила его работы. Например, «содержит слово подарок» или «имеет слово деньги». Такая система может функционировать. Однако подобрать верные шаблоны и создать успешно работающий детектор, основываясь лишь на интуиции, очень сложно.
Snyk Code — это нейросеть для быстрого анализа кода на уязвимости. Она может проверять не только написанный вами код, но и обнаруживать проблемы в безопасности в сторонних библиотеках и фреймворках. Это может быть особенно полезно для больших проектов, где используется много внешних библиотек.
«Copilot может генерировать большие участки кода по текстовому описанию. Я использовала его, когда нужно было, например, написать код для соединения разных сервисов с СУБД (MongoDB и Redis). До этого мне не приходилось работать с ними, поэтому нейросеть писала всё сама. И хотя функции нужно было написать довольно базовые, радует то, что не пришлось долго изучать документацию и тратить на это время».
Сегодня IT-индустрия развивается небывалыми темпами, вместе с этим растет популярность машинного обучения. Оно оказывает огромное влияние на многие процессы в мире, поэтому все больше людей интересуется ее направлениями. Одно из них – нейронные сети. Они строятся по принципу организации и функционирования нашего мозга.
Исследовательские проекты. Большое число готовых примеров нейронных сетей на Python – это исследовательские проекты. При этом ученые, работающие над ними, чаще всего программистами не являются. Этот язык имеет низкий порог входа: никто не занимается написанием нейронных сетей на Python с нуля, так как это занимает много времени. Существуют библиотеки для нейронных сетей Python, которые уже написали специалисты. Так вокруг Питон сложилось целое сообщество по нейросетям. Если вы занимаетесь исследовательской деятельностью, то следуйте в этом вопросе примеру других.
Нейронная сеть как подотрасль машинного обучения
Одна из разновидностей машинного обучения – обучение с учителем. Его суть заключается в том, что систему «тренируют». На первом этапе ей предлагают множество примеров определенной проблемы и желаемый вывод, таким образом, ее учат понимать прошлые данные. На втором этапе, когда система натренирована, ей предоставляют новые входные данные с целью самостоятельного предсказания выводов.
Python – один из самых популярных языков программирования, с помощью которого можно решать самые разные задачи. Именно поэтому он так распространен среди IT-специалистов. На нем создают приложения, автоматизируют задачи в системном администрировании, а также пишут тесты и бэкенд web-приложений.
Лаконичность и интероперабельность. Язык позволяет разрабатывать сложные алгоритмы за короткое время. Его отличают простота, лаконичность и выразительность. Помимо этого он обладает мощным механизмом интероперабельности с C\C++, что позволяет производить быстрые вычисления. Можно создавать простые и сложные нейронные сети на Python.
Никто не запрещает писать на других языках, но это будет дольше, сложнее, потребуется куда больше знаний, что, порой, нецелесообразно. И все же, даже используя Python, нужно иметь хотя бы базовое представление о том, как устроены нейросети. Из нашего материала вы узнаете, как это работает, почему именно Python и где можно обучиться этому языку.
Производительность в определенной задаче улучшается не средствами программирования, а за счет данных. Например то, как успешно удается почтовому сервису отсеивать спам или как продвинулись системы распознавания речи с появлением голосовых помощников Алиса, Siri, Alexa и других.
Кроме того, активно развиваются Datascience и нейронные сети на Python. Изучить язык можно самостоятельно, однако на это уйдет много времени и скорее это будет введение в обучение (нейронные сети на Python вряд ли получится создать без помощи специалиста). Если вы хотите освоить язык программирования Python быстро и качественно, обратите внимание на курс от GeekBrains в онлайн-формате.