Содержание статьи
Крестный отец нейросетей» уволился из Google
Распознавание речи
В 2022 году Хинтон представил идею нового алгоритма обучения нейросетей. Она состоит в том, чтобы заменить традиционные прямые и обратные проходы обратного распространения двумя прямыми проходами: один с положительными (то есть реальными) данными, а другой – с отрицательными данными, которые могут быть сгенерированы исключительно самой нейросетью. Каждый уровень имеет свою собственную целевую функцию, которая заключается просто в том, чтобы иметь высокую достоверность для положительных данных и низкую достоверность для отрицательных данных. То есть сравнение с входными данными для корректировки связей нейросети исключается. Этот подход к обучению ИИ сегодня только изучается.
Но надо сказать, что Хинтон с коллегами были не первыми, кто предложил этот подход. Первую обучаемую нейросеть еще в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Но та сеть была одноуровневой (ограничена в количестве шаблонов обучения), а у Хинтона – многоуровневая. Именно поэтому его и называют не отцом, а «Крестным отцом ИИ», наставником и воспитателем, не родившим, а развившим нейросети до современного уровня.
В 1980-х годах, когда появились более мощные компьютеры для вычислений, исследователи смогли разработать нейросети с двумя и тремя уровнями обучения. Однако возрождение интереса к нейронным сетям и революция в глубоком обучении произошли лишь в последние годы благодаря индустрии компьютерных игр. Современные игры требуют сложных вычислений для обработки большого числа операций. В итоге производители начали выпускать графические процессоры (GPU), которые объединяют тысячи относительно простых вычислительных ядер на одном чипе. Исследователи вскоре поняли, что архитектура графического процессора очень похожа на архитектуру нейросети.
Джеффри Хинтон, которого называют «Крестным отцом ИИ», рассказал The New York Times, что люди уже начали сталкиваться с негативными последствиями деятельности нейросетей. Это, например, потеря рабочих мест, когда работодатели поручают ИИ часть обязанностей увольняемых рабочих. Например, в Баварии на заводе BMW нейросети и роботы уже контролируют качество покраски кузовов автомобилей, а немногочисленные проверяющие люди лишь подстраховывают их. В результате подобных шагов работы лишатся миллионы людей во всем мире, уверен Хинтон и ряд других экспертов.
Над искусственным интеллектом британо-канадский когнитивный психолог и специалист по информатике Джеффри Хинтон, родившийся 6 декабря 1947 года, работал всю жизнь. Он один из тех, кто стоял у истоков искусственного разума, развивая его с 1970-х годов (сразу после окончания Кембриджа). Он является автором и соавтором более 200 рецензируемых публикаций.
Вместе с Дэвидом Румелхартом и Рональдом Дж. Уильямсом Хинтон написал одну из самых цитируемых статей в области исследования ИИ – «Изучение представлений путем обратного распространения ошибок». Статья, в которой популяризировался метод обратного распространения для обучения многоуровневых нейронных сетей, была опубликована в 1986 году.
Приведем очень грубое, но потому более-менее понятное объяснение (да простят нас программисты). В ходе обучения нейроны одного слоя, а в слое их несколько (сотен, тысяч, миллионов – зависит от сложности нейросети) транслируют получаемый сигнал всем нейронам следующего слоя (каждый нейрон одного слоя связан со всеми нейронами другого слоя). Этот второй (его еще называют скрытым) слой производит вычисления (сетевую или активную функцию) и рассылает результат всем нейронам третьего слоя (выходного слоя). Этот слой тоже вычисляет сетевую функцию и сравнивает результат с вводимыми изначально данными и результатами срединного слоя (слоев). Далее происходит корректировка связей. Так нейросеть и обучается, устраняя ошибки (разногласия) в своих «умозаключениях» (разницу на входе и выходе).
Например, логистической компании нужно построить самые быстрые маршруты. Если в качестве исходных данных будет использована информация о маршрутах, которые строили сами водители, нет смысла подключать нейросеть. При выборе они будут опираться на другие факторы. Если использование нейросетей всё же уместно, то для решения основной задачи может использоваться не одна нейросеть, а сразу несколько. В этом случае большая задача разбивается на много мелких.
Сервисы рекомендаций
Например, чтобы научить нейросеть управлять беспилотным автомобилем, нужно смоделировать поведение человека-водителя, который во время движения должен распознавать дорожные знаки и разметку, реагировать на сигналы светофора, прогнозировать поведение других водителей и замечать людей, которые оказались на дороге. Для решения каждой из этих задач в беспилотном автомобиле работает отдельная нейросеть [3] .
Следующей впечатляющей вехой стал прорыв ученого в области распознавания изображений с помощью AlexNet, разработанной в сотрудничестве с его учениками Алексом Крижевским и Ильей Суцкевером (к слову, уроженцем Нижнего Новгорода) для ImageNet challenge в 2012 году. Так началась эпоха развития компьютерного зрения.
Проработав в Google более десяти лет, доктор 76-летний Джеффри Хинтон решил покинуть компанию. И дело не только в том, что человек решил уйти на пенсию. Он не стал делать тайну из реальных причин ухода. Наоборот, он подчеркивает, что виной тому сам искусственный интеллект (ИИ), над которым доктор работал много лет. Точнее, те опасности, которые он несет. Словом, г-н Хинтон настроен весьма пессимистично относительно судьбы человечества и воинственно по отношению к ИИ.
Нейронные сети могут использоваться для решения задач из любых отраслей, но есть тонкости. Нейросети хорошо справятся только в тех случаях, когда задача уже была решена другими способами и есть накопленный объём релевантных данных. Новая задача — это область знания, к которой нейросеть вряд ли сможет подступиться. Если помимо данных важен ещё и контекст, лучше решить задачу без помощи нейросетей.
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт [4] .