Нейросеть что такое эпоха

0
26

Эпоха, батч, итерация — в чем различия

Градиентный спуск

Алгоритм итеративный, процедура проводится несколько раз, чтобы добиться оптимального результата. При правильной реализации алгоритма, на каждом шаге результат получается лучше. Таким образом, итеративный характер градиентного спуска помогает плохо обученной модели оптимально подстроиться под данные.

Обучение не так просто, как кажется. В нейронных сетях есть эффект переобучения: если тренировочных сетов слишком много и они слишком разные, нейросеть «теряется» и перестает эффективно выделять признаки. В результате она может, например, воспринять артефакт графики как чье-то лицо или перепутать мужчину с женщиной. Это происходит из-за размытия весов. И это не единственная ошибка, просто самая известная.

Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.

В протоколе Ethereum (ETH), например, эпоха — это время, необходимое для завершения 30 000 блоков на блокчейне. Продолжительность эпохи определяется темпом, с которым обрабатываются транзакции и достигаются соглашения, однако темп остается равномерным, с продолжительностью эпохи примерно в 100 часов.

Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.

Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.

Как работает нейронная сеть

Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.

На этот вопрос нет единственного точного ответа. Для различных датасетов оптимальное количество эпох будет отличаться. Но ясно, что количество эпох связано с разнообразием в данных. Например, в вашем датасете присутствуют только черные котики? Или это более разнообразный датасет?

С увеличением числа эпох, веса нейронной сети изменяются все большее количество раз. Кривая с каждый разом лучше подстраивается под данные, переходя последовательно из плохо обученного состояния (последний график) в оптимальное (центральный график). Если вовремя не остановиться, то может произойти переобучение (первый график) — когда кривая очень точно подстроилась под точки, а обобщающая способность исчезла.

В датасете базовые параметры модели изменяются с каждой эпохой. В результате алгоритм обучения с пакетным градиентным спуском получил название каждой пакетной эпохи. Размер партии обычно равен 1 или больше, и это всегда целое значение в номере эпохи. Альтернативно его можно представить в виде параметра for-loop с определенным числом, причем маршрут каждого цикла проходит через весь массив обучающих данных.

Нельзя пропустить через нейронную сеть разом весь датасет. Поэтому делим данные на пакеты, сеты или партии, так же, как большая статья делится на много разделов — введение, градиентный спуск, эпохи, Batch size и итерации. Такое разбиение позволяет легче прочитать и понять статью.

Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».

ЧИТАТЬ ТАКЖЕ:  Что мы знаем об искусственном интеллекте

В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.

В мире искусственных нейронных сетей эпоха (англ. epoch) — это один цикл обучения на массиве данных. Обучение нейронной сети обычно занимает много эпох. Проще говоря, если мы снабжаем нейронную сеть обучающими данными в различных паттернах на протяжении более чем одной эпохи, мы ожидаем улучшения генерализации, когда даем ей свежий ненаблюдаемый вход (тестовые данные).

Три задачи нейронных сетей

Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.

У градиентного спуска есть параметр, называемый скоростью обучения. На левой верхней картинке видно, что в самом начале шаги больше, то есть скорость обучения выше, а по мере приближения точек к краю кривой скорость обучения становится меньше благодаря уменьшению размера шагов. Кроме того, значение функции потерь (Cost function) уменьшается, или просто говорят, что потери уменьшаются. Часто люди называют функцию потерь Loss-функцией или просто «Лосс». Важно, что если Cost/Loss функция уменьшается, то это хорошо.

Когда полный массив данных передается вперед, а затем назад через нейронную сеть, это называется эпохой. Мы разбиваем эпоху на несколько меньших партий, потому что одна эпоха слишком велика, чтобы отправить на компьютер все сразу.

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Этот период времени используется для указания того, когда произойдут специфические события в сети блокчейна, например, когда будут распределяться поощрения или когда будет назначена новая группа валидаторов для подтверждения транзакций. Каждый протокол блокчейна определяет этот период времени по-разному. Обычно им называют время, которое требуется для завершения определенного количества блоков.

Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь