Содержание статьи
Искусственный интеллект: история развития, перспективы в будущем21 марта 2024 в 12: 19
История взлетов и падений
Идеи создания машин, обладающих сознанием, возникали еще в Древней Греции. В средние века и Новое время ученые создавали механизмы, заменяющие человеческий труд, например, в 17 веке Паскаль изобрел первую механическую цифровую вычислительную машину, в 19 веке Джозеф-Мари Жаккард создал программируемый ткацкий станок с инструкциями на перфокартах. В 1937 году Алан Тьрюнинг обнародовал свое изобретение – универсальную машину Тьюринга, в 1939 году в Нью-Йорке были представлены первый механический человек Electro с собакой Sparco.
Методы машинного обучения позволяют одним автоматам распознавать устную речь и записывать ее подобно секретарям-машинисткам прошлых лет, а другим – точно идентифицировать лица или отпечатки пальцев среди десятков миллионов других и обрабатывать тексты, написанные на естественных языках. Благодаря этим же методам самостоятельно движутся автомобили, компьютеры лучше врачей-дерматологов диагностируют меланомы по фотографиям родинок, сделанных с помощью сотовых телефонов, роботы воюют вместо людей; а конвейеры на заводах все больше автоматизируются.
Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.
Также искусственный интеллект используют для создания тренажеров и летательных аппаратов в авиации и при разработке новейших транспортных средств в целом. В робототехнике системы искусственного интеллекта внедряются в различных ботов, устройства для развлечения, например, создание самообучающихся щенков-роботов.
Поначалу, под влиянием первых успехов, исследователи позволяли себе несколько опрометчивые заявления, которые впоследствии неоднократно ставились им в упрек. Так, например, в 1958 году американец Герберт Саймон, позже ставший лауреатом Нобелевской премии по экономике, заявил, что если бы машины допускались к международным соревнованиям, то в ближайшие десять лет они стали бы чемпионами мира по шахматам.
Центральным понятием в искусственном интеллекте является агент. Под агентов подразумевается то, что воспринимает окружающую среду и воздействует на нее через исполнительные механизмы. Например, в Интернете вещей и робототехнике это восприятие происходит через различные датчики.
Применение
В 2022-2023 годах многих волнует генеративный ИИ. Бизнес хочет использовать его, чтобы сократить расходы, а специалисты боятся, что он отнимет у них работу. Консалтинговая компания McKinsey спрогнозировала влияние generative AI на производительность, автоматизацию и рабочую силу. Согласно новому отчету, генеративный ИИ может ежегодно приносить мировой экономике от 2,6 до 4,4 триллионов долларов (примерно 2–4% от совокупного мирового валового внутреннего продукта в этом году)
Конкуренция с ИИ на рынке труда вызывает у людей тревогу. Недавний опрос CNBC 8874 американцев показал, что 24% респондентов были «очень обеспокоены» или «несколько обеспокоены» тем, что искусственный интеллект их заменит. Есть реальный риск того, что ИИ может стать настолько хорош в автоматизации человеческой работы, что многие люди не смогут создавать такую же экономическую ценность. Чтобы этого избежать, аналитики рекомендуют делать технологию доступной для каждого. Так люди смогут автоматизировать рутинные задачи и заниматься более сложными и креативными. Например, в игровой индустрии крупные игроки могут использовать технологию для создания более сложных виртуальных миров, а небольшие студии выиграют от снижения производственных затрат.
1950-е: тест Тьюринга и конференция в Дартмуте. Математик Алан Тьюринг предложил идею мыслящей машины. Он считал, что машины, как и люди, могут использовать доступную информацию для принятия решений. Чтобы это проверить, он разработал тест. Человек с помощью текстового интерфейса задавал вопросы одновременно другому человеку и машине. Если отличить их ответы не получалось, считалось, что машина прошла тест и обладает искусственным интеллектом. Проверить концепцию Тьюринга оказалось сложно из-за ограниченной функциональности компьютеров и дорогой техники. Такие исследования были доступны только крупным технологическим компаниям и престижным университетам.
С 2010 года мощность компьютеров позволяет сочетать так называемые большие данные (Big Data) с методами глубокого обучения (Deep Learning), которые основываются на использовании искусственных нейронных сетей. Весьма успешное применение во многих областях (распознавание речи и изображений, понимание естественного языка, беспилотный автомобиль и т.д.) позволяет говорить о возрождении ИИ.
Однако возможность разрабатывать программы, выполняющие сложные интеллектуальные задачи, появилась только после появления современных компьютеров после Второй мировой войны. В 1950-х годах ученые из различных областей стали задумываться о возможности создания искусственного мозга. Тогда исследования в области неврологии показали, что мозг представляет собой нейронную сеть, а А. Тьюнинг предположил, что любой вид вычислений можно представить в цифровом виде, и в 1951 году была создана первая нейронная сеть SNARC аспирантом Марвином Мински. К 1950 году А. Тьюринг разработал тест, определяющий уровень схожести действий машины с сознанием человека, впоследствии названный тестом Тьюринга. Название «искусственный интеллект» впервые было использовано на Дартмутской конференции в 1956 году, тогда же и появилась научная дисциплина «Исследование искусственного интеллекта».
Прогресс замедлился в середине 1960-х годов. В 1965 году десятилетний мальчик одержал в шахматном матче победу над компьютером; в 1966 году в докладе, подготовленном по заказу Сената Соединенных Штатов Америки, говорилось о внутренних ограничениях, присущих машинному переводу. Около десяти лет пресса отзывалась об ИИ неодобрительно.
Этические риски
Однако при ближайшем рассмотрении становится очевидно, что работа для людей не пропадает, а трансформируется, требуя новых навыков. Точно так же независимость человеческой личности и ее свобода не подвергаются неминуемой опасности из-за развития ИИ – при условии, однако, что мы останемся бдительными перед лицом вторжения технологий в частную жизнь.
Для Джона Мак-Карти и Марвина Мински, как и для прочих организаторов летнего семинара в Дартмут-колледже, ИИ изначально представлял собой область науки, занимающейся компьютерным моделированием различных способностей интеллекта, идет ли речь об интеллекте человеческом, животном, растительном, социальном или филогенетическом. В основе этой научной дисциплины лежит предположение о том, что все когнитивные функции, как то обучение, мышление, расчет, восприятие, память, даже научное открытие или художественное творчество, могут быть описаны с точностью, дающей возможность запрограммировать компьютер на их воспроизведение. На протяжении более чем шестидесяти лет существования ИИ не появилось ничего, что позволило бы неоспоримо доказать либо опровергнуть гипотезу, которая продолжает оставаться открытой и побуждает ученых к новым изобретениям.
В некоторых книгах и фильмах ИИ развивается с негативными последствиями для человечества. Например, в фильме «Терминатор» искусственный интеллект становится угрозой для выживания людей. Неконтролируемое развитие ИИ может быть рискованным, но современные исследования и разработки направлены на создание безопасных и этичных систем искусственного интеллекта.
Могут ли машины стать умнее, чем люди? Нет, считает Жан-Габриэль Ганасия: это всего лишь миф, навеянный научной фантастикой. В своей статье он напоминает об основных этапах развития этой отрасли науки, о достижениях современной техники и об этических вопросах, все больше требующих к себе внимания.
Самообучающиеся интеллектуальные системы широко применяются практически во всех сферах, особенно в промышленности, банковском деле, страховании, здравоохранении и обороне. Многие рутинные процессы теперь можно будет автоматизировать, что преобразит наши профессии и, в конечном итоге, устранит некоторые из них.
Искусственный интеллект (ИИ) – это отрасль науки, официально увидевшая свет в 1956 году на летнем семинаре в Дартмут-колледже (Хановер, США), который организовали четверо американских ученых: Джон Мак-Карти, Марвин Мински, Натаниэль Рочестер и Клод Шеннон. С тех пор термин «искусственный интеллект», придуманный, вероятнее всего, с целью привлечения всеобщего внимания, стал настолько популярен, что сегодня вряд ли можно встретить человека, который никогда его не слышал. С течением времени этот раздел информатики развивался все больше, а интеллектуальные технологии в последние шестьдесят лет сыграли важную роль в изменении облика мира.
С конца 1990-х годов ИИ стали объединять с робототехникой и интерфейсом «человек – машина» с целью создания интеллектуальных агентов, предполагающих наличие чувств и эмоций. Это привело, среди прочего, к появлению нового исследовательского направления – аффективных (или эмоциональных) вычислений (affective computing), направленных на анализ реакций субъекта, ощущающего эмоции, и их воспроизведение на машине, и позволило усовершенствовать диалоговые системы (чат-боты).
4 декабря 2012 года на конференции Neural Information Processing Systems (NIPS) группа исследователей представила подробную информацию о своих свёрточных нейронных сетях, которые помогли им выиграть в конкурсе классификации ImageNet. Классификация изображения – это процесс определения категории или класса, к которому оно относится. Например, мы видим кота и понимаем: это рыжее пушистое существо – точно кот. Нейросеть определяет кота на изображении, анализируя пиксели и выделяя характерные признаки. Модель, которую представили на конференции, содержала нейросеть со множеством слоёв. Такая архитектура помогла распознавать изображения с точностью 85% – всего на 10% слабее человека.