Каковы направления развития искусственного интеллекта

0
14

Перспективы и тенденции развития искусственного интеллекта

Следующая по популярности группа технологий ИИ.

На развитие сферы эволюционных вычислений (ЭВ; автономное и адаптивное поведение компьютерных приложений и робототехнических устройств) значительное влияние оказали прежде всего инвестиции в нанотехнологии. ЭВ затрагивают практические проблемы самосборки, самоконфигурирования и самовосстановления систем, состоящих из множества одновременно функционирующих узлов. При этом удается применять научные достижения из области цифровых автоматов. Другой аспект ЭВ — использование для решения повседневных задач автономных агентов в качестве персональных секретарей, управляющих личными счетами, ассистентов, отбирающих нужные сведения в сетях с помощью поисковых алгоритмов третьего поколения, планировщиков работ, личных учителей, виртуальных продавцов и т. д. Сюда же относится робототехника и все связанные с ней области. Основные направления развития — выработка стандартов, открытых архитектур, интеллектуальных оболочек, языков сценариев/запросов, методологий эффективного взаимодействия программ и людей. Модели автономного поведения предполагается активно внедрять во всевозможные бытовые устройства, способные убирать помещения, заказывать и готовить пищу, водить автомобили и т. п. В дальнейшем для решения сложных задач (быстрого исследования содержимого Сети, больших массивов данных наподобие геномных) будут использоваться коллективы автономных агентов. Для этого придется заняться изучением возможных направлений эволюции подобных коллективов, планирования совместной работы, способов связи, группового самообучения, кооперативного поведения в нечетких средах с неполной информацией, коалиционного поведения агентов, объединяющихся «по интересам», научиться разрешать конфликты взаимодействия и т. п. Особняком стоят социальные аспекты — как общество будет на практике относиться к таким сообществам интеллектуальных программ.

Исследования в области нейронных сетей, позволяющих получить хорошие (хотя и приближенные) результаты при решении сложных задач управления, часто финансирует военное научное агентство DARPA. Пример — проект Smart Sensor Web, который предусматривает организацию распределенной сети разнообразных датчиков, синхронно работающих на поле боя. Каждый объект (стоимостью не более $300) в такой сети представляет собой источник данных — визуальных, электромагнитных, цифровых, инфракрасных, химических и т. п. Проект требует новых математических методов решения многомерных задач оптимизации. Ведутся работы по автоматическому распознаванию целей, анализу и предсказанию сбоев техники по отклонениям от типовых параметров ее работы (например, по звуку). Операция «Буря в пустыне» стала стимулом к развитию экспертных систем с продвинутым ИИ, применяемым в области снабжения. На разработках, связанных с технологиями машинного зрения, основано все высокоточное оружие В СМИ нередко можно прочитать о грядущих схватках самостоятельно действующих армий самоходных машин-роботов и беспилотных самолетов. Однако существует ряд нерешенных научных проблем, не позволяющих в ближайшие десятилетия превратить подобные прогнозы в реальность. Прежде всего это недостатки систем автоматического распознавания, не способных правильно анализировать видеоинформацию в масштабе реального времени. Не менее актуальны задачи разрешения коллизий в больших сообществах автономных устройств, абсолютно точного распознавания своих и чужих, выбора подлежащих уничтожению целей, алгоритмов поведения в незнакомой среде и т. п. Поэтому на практике военные пытаются достичь менее масштабных целей. Значительные усилия вкладываются в исследования по распознаванию речи, создаются экспертные и консультационные системы, призванные автоматизировать рутинные работы и снизить нагрузку на пилотов. Нейронные сети достаточно эффективно применяются для обработки сигналов сонаров и отличения подводных камней от мин. Генетические алгоритмы используются для эвристического поиска решения уравнений, определяющих работу военных устройств (систем ориентации, навигации), а также в задачах распознавания — для разделения искусственных и естественных объектов, распознавания типов военных машин, анализа изображения, получаемого от камеры с низким разрешением или инфракрасных датчиков.

Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми практическими успехами в сфере ИИ, прошла довольно быстро, потому что перейти от исследования экспериментальных компьютерных моделей к решению прикладных задач реального мира оказалось гораздо сложнее, чем предполагалось. На трудности такого перехода обратили внимание специалисты всего мира, и после детального анализа выяснилось, что практически все проблемы связаны с нехваткой ресурсов двух типов: компьютерных (вычислительной мощности, емкости оперативной и внешней памяти) и людских (наукоемкая разработка интеллектуального ПО требует привлечения ведущих специалистов из разных областей знания и организации долгосрочных исследовательских проектов). К сегодняшнему дню ресурсы первого типа вышли (или выйдут в ближайшие пять-десять лет) на уровень, позволяющий системам ИИ решать весьма сложные для человека практические задачи. А вот с ресурсами второго типа ситуация в мире даже ухудшается- именно поэтому достижения в сфере ИИ связываются в основном с небольшим числом ведущих ИИ-центров при крупнейших университетах.

«Курьер ЮНЕСКО» попытался разобраться в этой непростой теме на пересечении информатики, инженерии и философии и внести ясность в некоторые моменты. Прежде всего, спешим уверить наших читателей: на текущем этапе развития технологий даже самая продвинутая из интеллектуальных систем не способна мыслить, и мы весьма далеки от того, чтобы загрузить человека в компьютер. Роботы действуют в соответствии с алгоритмами, позволяющими ему взаимодействовать с человеком в четко установленных рамках, и не способны устанавливать полноценные социальные связи.

Несмотря на это, применение ИИ в некоторых областях вызывает неоднозначную реакцию. Это относится, в частности, к сбору персональных данных, который ставит под угрозу неприкосновенность частной жизни, к алгоритмам распознавания лиц, предназначенным для выявления агрессивного поведения или отражающим в себе расовые предрассудки, к беспилотным летательным аппаратам военного назначения, автономным боевым системам и многому другому. Использование ИИ создает целый ряд этических проблем, масштабы которых, вероятнее всего, со временем только вырастут.

Ключевым фактором, определяющим сегодня развитие ИИ-технологий, считается темп роста вычислительной мощности компьютеров, так как принципы работы человеческой психики по-прежнему остаются неясными (на доступном для моделирования уровне детализации). Поэтому тематика ИИ-конференций выглядит достаточно стандартно и по составу почти не меняется уже довольно давно. Но рост производительности современных компьютеров в сочетании с повышением качества алгоритмов периодически делает возможным применение различных научных методов на практике. Так случилось с интеллектуальными игрушками, так происходит с домашними роботами. Снова будут интенсивно развиваться временно забытые методы простого перебора вариантов (как в шахматных программах), обходящиеся крайне упрощенным описанием объектов. Но с помощью такого подхода (главный ресурс для его успешного применения — производительность) удастся решить, как ожидается, множество самых разных задач (например, из области криптографии). Уверенно действовать автономным устройствам в сложном мире помогут достаточно простые, но ресурсоемкие алгоритмы адаптивного поведения. При этом ставится цель разрабатывать системы, не внешне похожие на человека, а действующие, как человек. Ученые пытаются заглянуть и в более отдаленное будущее. Можно ли создать автономные устройства, способные при необходимости самостоятельно собирать себе подобные копии (размножаться)? Способна ли наука создать соответствующие алгоритмы? Сможем ли мы контролировать такие машины? Ответов на эти вопросы пока нет. Продолжится активное внедрение формальной логики в прикладные системы представления и обработки знаний. В то же время такая логика не способна полноценно отразить реальную жизнь, и произойдет интеграция различных систем логического вывода в единых оболочках. При этом, возможно, удастся перейти от концепции детального представления информации об объектах и приемов манипулирования этой информацией к более абстрактным формальным описаниям и применению универсальных механизмов вывода, а сами объекты будут характеризоваться небольшим массивом данных, основанных на вероятностных распределениях характеристик. Сфера ИИ, ставшая зрелой наукой, развивается постепенно — медленно, но неуклонно продвигаясь вперед. Поэтому результаты достаточно хорошо прогнозируемы, хотя на этом пути не исключены и внезапные прорывы, связанные со стратегическими инициативами. Например, в 80-х годах национальная компьютерная инициатива США вывела немало направлений ИИ из лабораторий и оказала существенное влияние на развитие теории высокопроизводительных вычислений и ее применение во множестве прикладных проектов. Такие инициативы будут появляться скорее всего на стыках разных математических дисциплин — теории вероятности, нейронных сетей, нечеткой логики. Статья опубликована в PC Week/RE №32, 2001 г., стр. 32.

ЧИТАТЬ ТАКЖЕ:  Как сделать робота с искусственным интеллектом в домашних условиях

Заключение

Профиль японских конференций (а этой стране принадлежит немало оригинальных и уникальных достижений в области ИИ), не сильно отличается от общемирового. Тем интереснее эти отличия — на них сосредоточены значительные объемы инвестиций государственных и частных японских организаций. Среди направлений, более популярных в Японии в сравнении с европейскими и американскими школами ИИ, отметим следующие: создание и моделирование работы э-рынков и э-ауционов, биоинформатика (электронные модели клеток, анализ белковой информации на параллельных компьютерах, ДНК-вычислители), обработка естественных языков (самообучающиеся многоязычные системы распознавания и понимания смысла текстов), Интернет (интеграция Сети и всевозможных датчиков реального времени в жилых домах, интеллектуальные интерфейсы, автоматизация рутинных работ на основе формализации прикладных и системных понятий Интернета, итерационные технологии выделения нужных сведений из больших объемов данных), робототехника (машинное обучение, эффективное взаимодействие автономных устройств, организация движения, навигация, планирование действий, индексация информации, описывающей движение), способы представления и обработки знаний (повышение качества знаний, методы получения знаний от людей-экспертов, раскопка и поиск данных, решение на этой основе задач реального мира — например, управления документооборотом). Много работ посвящено алгоритмам логического вывода, обучению роботов, планированию ими действий.

Это направление стабильно держится на первом месте. Продолжается совершенствование алгоритмов обучения и классификации в масштабе реального времени, обработки естественных языков, распознавания изображений, речи, сигналов, а также создание моделей интеллектуального интерфейса, подстраивающегося под пользователя. Среди основных прикладных задач, решаемых с помощью нейронных сетей, — финансовое прогнозирование, раскопка данных, диагностика систем, контроль за деятельностью сетей, шифрование данных. В последние годы идет усиленный поиск эффективных методов синхронизации работы нейронных сетей на параллельных устройствах.

3.1 Нечеткая логика Системы нечеткой логики активнее всего будут применяться преимущественно в гибридных управляющих системах. 3.2 Обработка изображений Продолжится разработка способов представления и анализа изображений (сжатие, кодирование при передаче с использованием различных протоколов, обработка биометрических образов, снимков со спутников), независимых от устройств воспроизведения, оптимизации цветового представления на экране и при выводе на печать, распределенных методов получения изображений. Дальнейшие развитие получат средства поиска, индексирования и анализа смысла изображений, согласования содержимого справочных каталогов при автоматической каталогизации, организации защиты от копирования, а также машинное зрение, алгоритмы распознавания и классификации образов. 3.3. Экспертные системы Спрос на экспертные системы остается на достаточно высоком уровне. Наибольшее внимание сегодня привлечено к системам принятия решений в масштабе времени, близком к реальному, средствам хранения, извлечения, анализа и моделирования знаний, системам динамического планирования. 3.4. Интеллектуальные приложения Рост числа интеллектуальных приложений, способных быстро находить оптимальные решения комбинаторных проблем (возникающих, например, в транспортных задачах), связан с производственным и промышленным ростом в развитых странах. 3.5. Распределенные вычисления Распространение компьютерных сетей и создание высокопроизводительных кластеров вызвали интерес к вопросам распределенных вычислений — балансировке ресурсов, оптимальной загрузке процессоров, самоконфигурированию устройств на максимальную эффективность, отслеживанию элементов, требующих обновления, выявлению несоответствий между объектами сети, диагностированию корректной работы программ, моделированию подобных систем. 3.6. ОС РВ Появление автономных робототехнических устройств повышает требования к ОС реального времени — организации процессов самонастройки, планирования обслуживающих операций, использования средств ИИ для принятия решений в условиях дефицита времени. 3.7. Интеллектуальная инженерия Особую заинтересованность в ИИ проявляют в последние годы компании, занимающиеся организацией процессов разработки крупных программных систем (программной инженерией). Методы ИИ все чаще используются для анализа исходных текстов и понимания их смысла, управления требованиями, выработкой спецификаций, проектирования, кодогенерации, верификации, тестирования, оценки качества, выявления возможности повторного использования, решения задач на параллельных системах. Программная инженерия постепенно превращается в так называемую интеллектуальную инженерию, рассматривающую более общие проблемы представления и обработки знаний (пока основные усилия в интеллектуальной инженерии сосредоточены на способах превращения информации в знания). 3.8. Самоорганизующиеся СУБД Самоорганизующиеся СУБД будут способны гибко подстраиваться под профиль конкретной задачи и не потребуют администрирования.

4.1. Автоматический анализ естественных языков (лексический, морфологический, терминологический, выявление незнакомых слов, распознавание национальных языков, перевод, коррекция ошибок, эффективное использование словарей). 4.2. Высокопроизводительный OLAP-анализ и раскопка данных, способы визуального задания запросов. 4.3. Медицинские системы, консультирующие врачей в экстренных ситуациях, роботы-манипуляторы для выполнения точных действий в ходе хирургических операций. 4.4. Создание полностью автоматизированных киберзаводов, гибкие экономные производства, быстрое прототипирование, планирование работ, синхронизация цепочек снабжения, авторизации финансовых транзакций путем анализа профилей пользователей. 5. Небольшое число конференций посвящено выработке прикладных методов, направленных на решение конкретных задач промышленности в области финансов, медицины и математики. Традиционно высок интерес к ИИ в среде разработчиков игр и развлекательных программ (это отдельная тема). Среди новых направлений их исследований — моделирование социального поведения, общения, человеческих эмоций, творчества.

Автор попытался составить общую картину развития различных направлений ИИ путем анализа тематики европейских и американских конференций по ИИ за последние несколько лет (ежемесячно в мире проходят десятки таких конференций). Сначала вкратце рассмотрим наиболее активно развиваемые подходы ИИ — в порядке убывания их популярности у специалистов. Надо отметить, что меньшая популярность нередко связана не столько с потенциалом технологии, сколько с отдаленностью перспектив ее прикладной реализации (например, крайне высокий потенциал киберзаводов пока не вызывает серьезного интереса из-за наличия множества нерешенных задач по их управлению).

Мы стоим на пороге четвертой промышленной революции. Однако человечество ждет и культурная революция: вне всякого сомнения, ИИ изменит привычный нам образ жизни, хотя и сложно предугадать, как именно. Неудивительно, что он завораживает нас и пугает одновременно.

Исследования, затрагивающие технические стороны ИИ, продвигаются стремительными темпами, тогда как изучение этических аспектов применения ИИ идет очень медленно. Несмотря на беспокойство в научных кругах и серьезные обсуждения этого вопроса в ряде стран, на сегодняшний день не существует международных правовых рамок, которые служили бы ориентиром для дальнейших исследований в этой области. «Мы обязаны провести всемирное и просвещенное обсуждение этой проблемы с тем, чтобы встретить новую эпоху с открытыми глазами, не жертвуя нашими ценностями, и привести к общему знаменателю наши моральные принципы», – считает Генеральный директор ЮНЕСКО Одрэ Азуле.

В последние годы в области искусственного интеллекта (ИИ) был совершен колоссальный прорыв. Новые изобретения позволяют воплотить в жизнь то, что еще совсем недавно казалось фантастикой. Современные компьютеры и роботы способны самообучаться, совершенствовать свою работу и даже принимать решения. И хотя сегодня действиями машины руководят написанные человеком алгоритмы, а не собственное сознание, смотреть на будущее без тревоги невозможно, а в голове рождается множество вопросов. Может ли компьютер мыслить? На что способен ИИ на данном этапе развития? Насколько велика степень автономии интеллектуальных систем? Останется ли окончательное решение за человеком?

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь