Когда искусственный интеллект заменит программиста

0
18

Заменит ли искусственный интеллект разработчиков

Человеческий мозг vs Искусственный интеллект

А совсем недавно – 12-14 февраля 2024 года – на Всемирном правительственном саммите в Дубае обсуждался искусственный интеллект, и CEO компании NVIDIA Дженсен Хуанг сказал, что если последние 10-15 лет советовали учить программирование и компьютерные науки, то сейчас эти советы неактуальны, ведь ИИ превращает каждого человека в программиста и дает возможность прокачать свои навыки и существенно повысить производительность в других востребованных сферах, например в цифровой биологии, обучении, производстве, фермерстве и тому подобное.

Современный технологический ландшафт меняется с невероятной скоростью, и искусственный интеллект (ИИ, AI) сегодня является одним из его Эверестов. Он уже помогает нам в автоматизации различных задач и процессов: упрощает написание текстов и программного кода, генерирует изображения и видеоряды, консультирует нас по различным вопросам, помогает учить иностранные языки.

ИИ автоматизирует такие задачи, как выделение ресурсов, управление конфигурацией и масштабированием, анализирует данные о производительности системы и предлагает оптимизацию для использования ресурсов и сокращения расходов. Также системы с интеллектом автоматически обнаруживают и устраняют проблемы в облачной инфраструктуре, повышая отказоустойчивость и время безотказной работы системы.

Хуанг – это один из самых богатых людей на планете, а компания Nvidia – крупнейший разработчик графических процессоров на мировом рынке, лидер в сегменте дискретных видеокарт (87% против 10% у AMD во II квартале 2023 г. – Juniper Research), а также главный игрок на рынке аппаратных ускорителей искусственного интеллекта.

Руководитель Nvidia считает, что вместо программирования будущим специалистам следует реализовывать себя в совершенно других направлениях. В качестве примера он привел максимально далекие от информационных технологий отрасли (если не учитывать глубину проникновения ИТ в них) – биотехнологии, образовательную сферу, промышленность и даже сельское хозяйство.

С другой стороны, качество кода, создаваемого ИИ, пока не отличается своей элегантностью и высокой оптимизацией. Это наглядно доказали авторы прошлогоднего исследования университета Пердью (США) – они продемонстрировали, что ChatGPT ответил неправильно более чем на половину вопросов по программированию.

На картинке изображена глубокая нейросеть – это сеть, которая имеет более трех скрытых слоев (hidden layers), включая входной (input) и выходной (output). Если слоев всего 3, имеем дело с простейшей нейросетью. Кстати, картинку выше можно рассматривать как алгоритм глубокого обучения.

ЧИТАТЬ ТАКЖЕ:  Как работают нейросети ютуб

Ещё в 2017 году исследователи из Oak Ridge National Laboratory – американской лаборатории, которая занимается научной деятельностью и финансируется Министерством энергетики США – опубликовали статью, в которой предполагают, что к 2040 году большинство программного кода будут писать именно машины, и это радикально повлияет на создание ПО как таковое.

Управление сетью

Человеко-машинное взаимодействие с привлечением ботов на основе ИИ способствует автоматизации рутинных задач вроде сброса паролей и решения инцидентов, уменьшая нагрузку на службу поддержки и повышая её эффективность. Также эти системы анализируют данные IT-инфраструктуры, чтобы прогнозировать потенциальные сбои, принимать превентивные меры, минимизировать время простоя, диагностировать первопричины проблем и предлагать решения, оптимизируя процессы устранения неисправностей.

Машинный интеллект обнаруживает необычные шаблоны сетевого трафика, чтобы предотвратить кибератаки и/или перебои в работе сети. Также он анализирует сетевые данные и автоматически настраивает конфигурации для оптимальной производительности и использования ресурсов, прогнозирует тенденции сетевого трафика и динамически распределяет ресурсы, чтобы обеспечить бесперебойную работу и избежать появления узких мест (так называемых «bottlenecks»).

Глава корпорации Nvidia Дженсен Хуанг (Jensen Huang) заявил, что изучение языков программирования и в целом погружение в процесс написания ПО – отныне бесполезное занятие. По его мнению, вместо живых программистов код может писать генеративный искусственный интеллект, пишет портал TechSpot.

Как известно, большинство гор возникают на месте столкновений тектонических плит в сопровождении землетрясений – похожий процесс имеем и с активным развитием ИИ. Человечество разделилось на два больших лагеря: первые восторженно наблюдают за процессом образования технологических Гималаев, а вторые предсказывают ряд катастроф – одной из самых страшных указывают возможную безработицу, особенно среди разработчиков.

Данные обучения (training data) помогают обучать нейронную сеть и улучшать её точность с течением времени. Когда алгоритмы обучения качественно настроены, они становятся прочным фундаментом ИИ, поскольку могут очень быстро классифицировать и кластеризовать данные – это позволяет существенно ускорить различные операции. Классификация нейронных сетей с примерами реализации здесь приводиться не будет, но отметим поисковый алгоритм Google – это, наверное, самая известная реализация нейронки; именно благодаря ей поисковик столь быстр и эффективен.

Искусственный интеллект означает способность машин имитировать человеческие когнитивные функции, такие как обучение, решение проблем и принятие решений. Он охватывает широкий спектр технологий и приложений, позволяющих машинам выполнять задачи, которые обычно требуют человеческого интеллекта, например визуальное восприятие, распознавание речи, принятие решений и языковой перевод.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь