5 языков программирования ИИ для начинающих
C++
Создание искусственного интеллекта (ИИ) — это сложный и многоуровневый процесс, который объединяет знания из разных областей науки и техники. В основе этого процесса лежит машинное обучение, которое предполагает использование алгоритмов и моделей для обучения компьютера выполнять определенные задачи без явного программирования. Этот метод включает этапы обучения на основе данных, когда алгоритмы анализируют большие объемы информации для выявления закономерностей и шаблонов.
Java, благодаря своей платформенной независимости и стабильности, также находит применение в области искусственного интеллекта. Фреймворки, такие, как Apache OpenNLP и Deeplearning4j, обеспечивают средства для создания сложных моделей машинного обучения. Однако в некоторых случаях, Java может оказаться менее производительным по сравнению с более современными языками программирования для искусственного интеллекта.
Многие популярные библиотеки также представлены на Java, например Deeplearning4j — библиотека с открытым исходным кодом, ориентированная на приложения глубокого обучения, и Neuroph — библиотека для построения нейронных сетей на Java. Java также обладает мощными возможностями для обработки данных, что позволяет полностью управлять пайплайном данных в корпоративной среде.
Кстати, средняя зарплата выпускников Kata через год — 221 000 рублей. Так что если ты планировал начать карьеру в IT, сейчас самое время. Переходи по ссылке и узнавай подробности.
Итак, программирование ИИ работает на основе тех же алгоритмов, но отличается сложностью и обучаемостью. Для работы алгоритмов ИИ нет необходимости в явном виде задавать входные и выходные параметры. В то же время обычный алгоритм требует предоставления полной информации, необходимой для решения задачи.
Поскольку ИИ представляет собой комбинацию множества алгоритмов, разработчики должны уделять особое внимание налаживанию обмена информацией и передачей знаний о данных между этими алгоритмами — и этот поток разработчику необходимо организовать, чтобы выполнить более сложные задачи. В совокупности, этот процесс организации и считается созданием воркфлоу программы.
Алгоритмический воркфлоу построен таким образом, чтобы воспринимать и обрабатывать информацию в манере, напоминающей человеческий разум. Этот процесс, являющийся начальным состоянием программы ИИ, в дальнейшем применяется на набор данных, относящихся к решаемой проблеме.
Получив набор данных, алгоритм или модель ИИ распознает в них закономерности и пытается учиться на них. При выполнении второй итерации алгоритма на наборе данных он использует знания, полученные в ходе первой итерации, постепенно совершенствуясь в решении проблемы. Этот процесс повторяется до тех пор, пока модель не достигнет определенной степени точности. Этот процесс называется обучением модели.
Чтобы убедиться, что модель ищет наиболее оптимальное решение, обычно рассчитывают так называемую “функцию стоимости”. Функция стоимости определяет, насколько эффективно алгоритм справляется с поставленной задачей, рассчитывая некоторый процент ошибки в конечном результате работы алгоритма.
После того как модель прошла обучение и научилась самостоятельно решать задачу, ее можно запустить в работу. Такой подход позволяет получить алгоритмы, точность и эффективность которых превосходит человеческий труд.
Языки, используемые для создания этих сложных алгоритмов ИИ, похожи на те, что применяются для создания других компьютерных программ. Однако в последнее время на первый план выходит концепция, известная как фреймворки. Фреймворки строятся на основе существующих языков программирования, но предоставляют уникальную функциональность, позволяющую создавать алгоритмы искусственного интеллекта.
R — это язык программирования, широко используемый в науке о данных — профессии, в которой активно применяется искусственный интеллект. Наука о данных подразумевает обработку и анализ данных для поиска закономерностей с помощью искусственного интеллекта, используя статистику и математику. В программном обеспечении имеется обширный набор библиотек для решения задач науки о данных, таких как преобразование, предварительная обработка и анализ данных.
Большинство преимуществ R заключается в его возможностях по статистической обработке данных. Они включают линейное и нелинейное моделирование, анализ временных рядов, кластеризацию и визуализацию. Кроме того, он способен эффективно хранить данные и получать к ним доступ, что делает его отличным выбором для построения алгоритмов машинного обучения.
R не рекомендуется использовать начинающим программистам или специалистам по искусственному интеллекту, поскольку он имеет крутую кривую обучения. Однако в корпоративных системах, где обрабатываются большие объемы данных, польза от изучения R будет очень велика.
SciKit-Learn -— это еще одна библиотека Python, которая работает с важной частью рабочего процесса ИИ — данными. SciKit-Learn предоставляет функции для классификации, выбора моделей и предварительной обработки данных. Она часто используется для приложений по добыче и анализу данных. Эта библиотека с открытым исходным кодом используется для обработки данных и управления ими таким образом, чтобы алгоритмам было удобно их воспринимать.
Программирование искусственного интеллекта становится теперь более доступным, чем когда-либо, благодаря большому количеству библиотек и обучающего материала по данной теме. Для популярных языков, таких как Python и Java, обучающий материал широко представлен в интернете, что делает вход в программирование искусственного интеллекта даже легче для новичков.
Создание программ ИИ также требует знания когнитивных систем человека, так как в этом случае будет легче разрабатывать алгоритмы, которые работают аналогичным способом, как и наш мозг, это позволит более глубоко понять всю процедуру в целом.
Как правило, выпускники Kata легко справляются даже не с самыми простыми задачами, включая работу с ИИ. На курсах ребята получают актуальные знания и практический опыт работы с реальными проектами. Если ты тоже хочешь начать свой путь в IT, то сделай это прямо сейчас. Переходи по ссылке, чтобы узнать актуальную информацию.
Как создается ИИ?
LISP (List Processing) — это старейший язык программирования, который нашел свое применение в области искусственного интеллекта. Его мощная система макросов и динамическая типизация делают его идеальным для создания интеллектуальных систем. Несмотря на свою долгую историю, LISP остается востребованным в академических и исследовательских сферах.
Искусственный интеллект (AI), машинное обучение (ML) и глубокое обучение (DL) в настоящее время активно используются в компаниях для упрощения различных бизнес-процессов. Более того, с облачными решениями в области искусственного интеллекта, ставшими простым способом для компаний внедрять в свои сервисы ИИ и предоставлять их для обычных пользователей, здесь открываются новые возможности в эпоху мобильных вычислений.
Разработка искусственного интеллекта — не такая уж и непонятная, как может показаться с первого взгляда, задача. В своей основе ИИ представляет собой последовательность алгоритмов, предназначенных для выполнения конкретной задачи. Алгоритм — это просто способ, с помощью которого пользователь указывает компьютеру, каким образом выполнять ту или иную задачу.
Например, можно написать короткий алгоритм для определения наибольшего из трех чисел. В этом алгоритме компьютеру предлагается сравнить все три числа между собой и вывести число, которое больше двух других. В свою очередь алгоритмы искусственного интеллекта — это более специализированный тип алгоритмов.
Когда речь идет об искусственном интеллекте, большее количество подобных алгоритмов объединяется для выполнения более сложных процессов. Однако некоторые алгоритмы ИИ позволяют компьютерам самообучаться и улучшать свои предыдущие результаты. Такой подход чаще всего называют машинным обучением.
Python, безусловно, лидер в области искусственного интеллекта. Его читаемый и простой синтаксис делает его идеальным для разработки сложных алгоритмов и моделей машинного обучения. Богатый экосистем Python, включая библиотеки NumPy, TensorFlow и PyTorch, обеспечивает мощные инструменты для работы с данными и создания нейросети. Однако Python может столкнуться с проблемами производительности в задачах, требующих высокой скорости выполнения.
Python — один из самых популярных выборов для программистов в области искусственного интеллекта. У Python есть ряд особенностей, которые делают его отлично подходящим для программирования ИИ — этот язык легко изучать и читать. Создатель Python разработал этот язык так, чтобы он легко читался; это совсем не то же самое, что беспорядочные строки кода в языках, созданных ранее. Названия функций и сам код написаны на простом английском языке, что снижает сложность обучения для начинающих пользователей.
Язык Python является мощным и универсальным. Этот язык можно использовать для решения самых разных задач — от создания веб-страниц до создания искусственного интеллекта. Он совместим с большинством платформ и поддерживает множество методов программирования. Благодаря этим возможностям Python позволяет разработчикам ИИ сосредоточиться на создании рабочего процесса алгоритма, а не на написании кода и его отладке.
Одним из важнейших преимуществ Python для ИИ по сравнению с другими языками программирования является широкая поддержка библиотек ИИ. Библиотеки — это наборы функций, облегчающие реализацию определенных концепций. Эти библиотеки могут добавить специализированную функциональность ИИ в языки Python общего назначения. Давайте подробнее рассмотрим наиболее популярные библиотеки ИИ для Python.
Кроме перечисленных выше языков, сегодня большую популярность приобретает Lisp. На вопрос о причинах этого Даниэль Вивона, генеральный директор UDX Interactive, отвечает: «Lisp и его разновидности — языки, предоставляющие программисту широкие возможности. Его растущая популярность является отражением зрелости области ИИ. Для крупных проектов, в которых имеются исследовательские группы или много опытных программистов в области ИИ, Lisp является отличным языком.
TensorFlow — это библиотека на языке Python, разработанная компанией Google и предоставленная в открытом доступе. Библиотека используется для написания программ ИИ, использующих машинное обучение. Она также поддерживает реализацию нейронных сетей и составляет большую часть производственных ИИ-сервисов Google. TensorFlow широко используется многими специалистами в области ИИ благодаря возможности распараллеливания рабочих нагрузок и легкому масштабированию. Она активно поддерживается компанией Google и имеет развитое сообщество разработчиков.
Для разработки алгоритмов ИИ сегодня могут использоваться различные универсальные и специализированные языки программирования, наиболее популярным из которых является универсальный Python. Python используется энтузиастами ИИ из-за его мощности и в то же время простому синтаксису, что делает язык одинаково доступным как для новичков, так и для опытных пользователей.
R, специальный язык программирования используемый для статистических вычислений, — также популярен для разработки алгоритмов ИИ. R хорошо подходит для современного ИИ, поскольку позволяет легко обрабатывать большие объемы данных. Кроме того, статистика является важной частью разработки модели ИИ, что делает его вторым, наиболее распространенным языком программирования для ИИ.
Кроме них, для программирования ИИ используются такие языки программирования, как C++ и Java. Эти языки используются в тех случаях, когда существует конкретная потребность, которая может быть решена только с их помощью. Другим популярным вариантом для программирования ИИ является Scala — объектно-ориентированный язык программирования.
Чтобы определиться с языком программирования ИИ предлагаем подробнее узнать о каждом из них.