Содержание статьи
Виды нейронных сетей
Как обучать нейронные сети?
Нейронная сеть медленно накапливает знания из этих наборов данных, которые заранее дают правильный ответ. После обучения сеть начинает делать предположения об этническом происхождении или эмоциях нового изображения человеческого лица, которое она никогда раньше не обрабатывала.
Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.
6. Автокодировщики: Искусство Сжатия и Извлечения
Автокодировщики – это нейронные сети, обученные воспроизводить входные данные. Эффективность их применения проявляется в областях, таких как рекомендательные системы и уменьшение размерности данных, где важна точность воспроизведения.
В современном мире нейронные сети стали настоящим флагманом в области искусственного интеллекта, предоставляя невероятные возможности для обработки данных и решения сложных задач. Уникальность каждого типа нейронных сетей позволяет оптимизировать их для конкретных целей. Давайте пройдемся по ключевым видам нейронных сетей, которые активно формируют ландшафт современных технологических решений.
Нейронные сети прямого распространения (Feed forward neural networks, FFNN). Прямолинейный вид нейросетей, при котором соседние узлы слоя не связаны, а передача информации осуществляется напрямую от входного слоя к выходному. FFNN имеют малую функциональность, поэтому часто используются в комбинации с сетями других видов.
7. Генеративные Сети (GAN): Искусство Творения в Мире Алгоритмов
Генеративные сети (GAN) представляют собой уникальный дуэт — генератор и дискриминатор, конкурирующие за создание и оценку подлинности данных. Используемые для генерации изображений, видео и других контентов, GAN стали невероятно важными в креативных сферах.
2. Многослойные Перцептроны (MLP): Строим Будущее С Искусственным Интеллектом
Эволюция привела к созданию многослойных перцептронов (MLP) – сетей, состоящих из входного, скрытого и выходного слоев. Внутренние взаимосвязи между нейронами каждого слоя формируют основу для эффективного решения задач классификации и распознавания образов.
Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.
Нейронные сети прямого распространения
Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:
Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.
Нейронные сети помогают компьютерам принимать разумные решения с ограниченным участием человека. Они могут изучать и моделировать отношения между нелинейными и сложными входными и выходными данными. Например, нейронные сети могут выполнять следующие задачи.
Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например:
Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:
Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.
Скрытый слой
Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.
При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.
С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.
Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.
3. Рекуррентные Нейронные Сети (RNN): Магия Последовательностей
RNN созданы для работы с последовательными данными, такими как временные ряды или текст. Их уникальность в циклических связях, которые позволяют учитывать предыдущие входы. Такие сети прекрасно справляются с задачами обработки естественного языка и машинного перевода.
Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.