Содержание статьи
Развитие искусственного интеллекта: история, современные тенденции
80 и 90-е годы как прорыв в развитии искусственного интеллекта в мире
Эта ситуация начинает меняться, но в основном она присутствует в исследовательских лабораториях и технологических фирмах, а не в клинической практике. Едва ли не проходит неделя без того, чтобы исследовательская лаборатория не заявила, что она разработала подход к использованию ИИ или больших данных для диагностики и лечения болезни с равной или большей точностью, чем врачи-клиницисты. Многие результаты основаны на анализе рентгеновских снимков, однако некоторые включают и другие типы изображений, такие как сканирование сетчатки или геномная прецизионная медицина [11]. Поскольку эти типы выводов основаны на статистических моделях машинного обучения, они открывают эру доказательной и вероятностной медицины, которая обычно считается позитивной, но приносит с собой много проблем в медицинской этике и отношениях между пациентом и клиницистом [12].
В здравоохранении доминирующее применение ОЕЯ связано с созданием, пониманием и классификацией клинической документации и опубликованных исследований. Системы ОЕЯ могут анализировать неструктурированные клинические заметки о пациентах, готовить отчеты (например, о рентгенологических исследованиях), расшифровывать взаимодействие с пациентами и вести беседу с ИИ.
Во-первых, рентгенологи не только читают и интерпретируют изображения. Как и другие системы ИИ, радиологические системы ИИ выполняют отдельные задачи. Модели ГО в лабораториях и стартапах обучаются для конкретных задач распознавания изображений (таких как обнаружение узлов на компьютерной томографии грудной клетки или кровоизлияния на магнитно-резонансной томографии головного мозга). Тысячи таких узких задач обнаружения необходимы, чтобы полностью идентифицировать все потенциальные находки на медицинских изображениях, и только некоторые из них могут быть выполнены ИИ сегодня. Радиологи также консультируются с другими врачами по вопросам диагностики и лечения, лечат заболевания (например, проводят местную абляционную терапию) и выполняют управляемые изображениями медицинские вмешательства, такие как биопсия ракового образования и имплантация сосудистых стентов (интервенционная радиология), определяют технические параметры визуализационных исследований, которые должны быть выполнены (с учетом состояния пациента), соотносят результаты изображений с другими медицинскими записями и результатами тестов, обсуждают процедуры и результаты с пациентами и многие другие мероприятия.
Затронет AI и рынок труда, ведь по оценкам специалистов, роботы легко могут встать на замену работников в банках, магазинах, курьерских службах и такси. Под угрозой работа монотонного характера с предсказуемыми действиями, статистика, математические исследования.
Наиболее сложные формы МО включают глубокое обучение (ГО), или нейросетевые модели с многоуровневыми функциями или переменными, которые предсказывают результаты. В таких моделях могут быть тысячи скрытых функций, которые обнаруживаются благодаря более быстрой обработке современных графических процессоров и облачных архитектур. Распространенным применением ГО в здравоохранении является распознавание потенциально раковых образований на рентгенологических снимках [4]. ГО все чаще применяется к радиомике – метод, который извлекает большое количество признаков из рентгеновских изображений с использованием алгоритмов оценки данных, или к обнаружению клинически значимых особенностей в данных визуализации, выходящих за рамки того, что может быть воспринято человеческим глазом [5]. ГО наиболее часто встречается в онкологически ориентированном анализе изображений, а также все чаще используется для распознавания речи и как таковое является формой обработки естественного языка (ОЕЯ), описанной ниже. В отличие от более ранних форм статистического анализа, каждая особенность модели ГО обычно не имеет большого значения для человека-наблюдателя. В результате объяснение результатов модели может быть очень трудным или невозможным для интерпретации.
Независимо от того, основаны ли они на правилах или алгоритмах, по своей природе рекомендации ИИ по диагностике и лечению иногда трудно встроить в клинические рабочие процессы и системы ЭМК. Такие проблемы интеграции, вероятно, были бо́льшим препятствием для широкого внедрения ИИ, чем любая неспособность обеспечить точные и эффективные рекомендации; и многие основанные на ИИ возможности диагностики и лечения технологических фирм являются автономными по своей природе или затрагивают только один аспект медицины. Некоторые поставщики ЭМК начали внедрять ограниченные функции ИИ (помимо поддержки клинических решений на основе правил) в свои предложения, но они находятся на ранних стадиях разработки. Провайдерам придется либо самим предпринимать существенные интеграционные проекты [16], либо ждать, пока поставщики ЭМК не добавят больше возможностей ИИ.
Совсем недавно система IBM Watson широко освещалась средствами массовой информации за свое внимание к точной медицине, особенно к диагностике и лечению рака. Watson использует комбинацию возможностей машинного обучения и ОЕЯ. Однако энтузиазм применения технологии угас, поскольку их клиенты осознали трудность обучения Watson обращению с конкретными типами рака и интеграции Watson в процессы и системы диагностики и лечения [9]. Watson – это не отдельный продукт, а набор «когнитивных услуг», предоставляемых через интерфейсы прикладного программирования (application programming interfaces – API), включая программы анализа данных на основе речи и языка, зрения и машинного обучения. Большинство наблюдателей считают, что API Watson технически способны диагностировать и лечить рак, но взять на себя лечение рака было слишком амбициозной целью. Watson и другие проприетарные программы также пострадали от конкуренции с бесплатными программами с открытым исходным кодом, предоставляемыми некоторыми производителями, такими как TensorFlow от Google.
Мы, вероятно, столкнемся со многими этическими, медицинскими, профессиональными и технологическими изменениями, связанными с ИИ в здравоохранении. Важно, чтобы клиники, а также государственные и регулирующие органы создавали структуры для мониторинга ключевых вопросов, ответственного реагирования и создания механизмов управления для ограничения негативных последствий. Это одна из наиболее мощных и последовательных технологий воздействия на человеческие общества, поэтому она потребует постоянного внимания и продуманной политики в течение многих лет.
Первые шаги
5. Vial A., Stirling D., Field M., Ros M., Ritz C., Carolan M., Holloway L., Miller A.A. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Translational Cancer Research. 2018. V. 7. No. 3. P. 803–816. DOI: 10.21037/tcr.2018.05.02.
10. NHS. Measuring Shared Decision Making A review of research evidence A report for the Shared Decision Making programme In partnership with Capita Group Plc Shared Decision Making,» 2012. [Electronic resource]. URL: http://www.kingsfund.org.uk/publications/nhs (date of access: 15.09.2020).
Область искусственного интеллекта (ИИ) одна из самых быстрорастущих отраслей промышленности, в том числе и в медицине. ИИ упрощает взаимодействие пациентов, врачей и администраторов клиник, выполняя задачи, которые обычно выполняются людьми, но за меньшее время и с меньшими затратами. Независимо от того, используется ли он для поиска новых связей между генетическими кодами или для управления хирургическими роботами, ИИ изобретает и оживляет современное здравоохранение с помощью машин, которые могут прогнозировать, познавать, усваивать и управлять. Основные направления деятельности ИИ в здравоохранении: для эффективной диагностики и уменьшения ошибок; разработка новых лекарственных средств; рационализация работы с пациентами; интеллектуальный анализ и управление медицинскими данными; робот-ассистированная хирургия. Предпосылки создания интеллектуальных алгоритмов для здравоохранения: увеличение числа заболеваний в связи с модернизацией здравоохранения и, как результат, увеличение продолжительности жизни приводит к нагрузке на систему оказания медицинской помощи; огромный пласт знаний, который приходится обрабатывать и применять специалистами, выходит за пределы человеческих возможностей; множество данных для каждого пациента в связи с прогрессированием диагностики и появлением индивидуальных сенсоров.
Но даже в таких профессиях, как рентгенолог и патологоанатом, проникновение ИИ в эти области, вероятно, будет медленным. Несмотря на то что такие технологии, как ГО, проникают в способность диагностировать и классифицировать изображения, есть несколько причин, по которым, например, работа рентгенолога не исчезнет в ближайшее время [25].
Вовлеченность и приверженность пациентов уже давно рассматривается как проблема «последней мили» здравоохранения – последний барьер между неэффективными и хорошими результатами диагностики и лечения. Чем больше пациентов активно участвуют в своем собственном благополучии и наблюдении, тем лучше результаты применения, финансовых показателей и опыт участников в системе здравоохранения. Эти факторы все чаще рассматриваются с помощью больших данных и ИИ.
Во-вторых, клинические процессы использования изображений на основе ИИ еще далеки от готовности к ежедневному использованию. Различные поставщики технологий визуализации и алгоритмы ГО имеют различные очаги: вероятность поражения, вероятность рака, особенности узлов или его местоположение. Эти отдельные очаги очень затруднили бы внедрение систем глубокого обучения в современную клиническую практику.