Содержание статьи
Что такое нейросети, принципы работы и как их использовать в интернет-торговле
База
В материале попробуем просто рассказать о том, как устроена нейронная сеть, какие типы архитектуры нейросетей существуют и какую роль в работе сетки играют слои. Материал — для нетехнических специалистов. Понимание базы поможет чуть лучше понимать инженеров и разработчиков, а также, возможно, принимать более информированные бизнес-решения, связанные с внедрением разработок на основе ИИ.
Эти сложные алгоритмы, вдохновлённые работой человеческого мозга, способны обрабатывать огромные объёмы данных и выявлять закономерности, которые трудно заметить с помощью традиционных методов анализа. Нейронные сети находят применение в самых различных областях — от финансовых прогнозов и диагностики заболеваний до персонализированного маркетинга и автоматизации производственных процессов.
Например, чтобы научить нейросеть управлять беспилотным автомобилем, нужно смоделировать поведение человека-водителя, который во время движения должен распознавать дорожные знаки и разметку, реагировать на сигналы светофора, прогнозировать поведение других водителей и замечать людей, которые оказались на дороге. Для решения каждой из этих задач в беспилотном автомобиле работает отдельная нейросеть [3] .
Применение Dropout во время обучения улучшает способность модели обобщать, экстраполировать полученные знания на новые, незнакомые данные. Это повышает производительность модели в реальных условиях, когда она сталкивается с данными, отличными от тех, на которых она обучалась. Это можно назвать гибкостью.
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;
Как работает нейросеть?
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
Правильная комбинация слоев и архитектур может значительно повысить производительность нейронной сети и качество результатов её работы. Различные типы нейронных сетей имеют свои особенности внутренней архитектуры, а что ещё важнее — та или иная архитектура лучше справляется с тем или иным типом задач. Вот пара примеров:
Нейронные сети состоят из множества взаимосвязанных узлов — по аналогии с биологией человека их называют нейронами. Каждый нейрон получает входные данные, обрабатывает их и передает результат следующему нейрону. Эта структура напоминает работу человеческого мозга, где нейроны соединены синапсами, передающими электрические сигналы. В искусственных нейронных сетях нейроны образуют слои, а информация передаётся от одного слоя к другому.
Слои пулинга (или подвыборки) выбирают одни элементы из входных данных как наиболее важные и отбрасывают другие как менее значимые. Например, в случае обработки изображений, слой пулинга может взять квадратный участок изображения и выбрать из него самый яркий пиксель (максимальное значение) или усреднить значения пикселей (среднее значение). Это позволяет сократить количество данных, которые нужно обрабатывать, что, в свою очередь, уменьшает вычислительные затраты и время обучения модели.
Сверточные нейронные сети (CNN) обычно состоят из чередующихся сверточных слоёв и слоёв пулинга, за которыми следуют один или несколько полносвязных слоев. Благодаря операции свёртки слои в CNN эффективно извлекают пространственные признаки из изображений и демонстрируют высокую точность на задачах классификации изображений. Соответственно, такой тип сеток хорош для задач компьютерного зрения, например, распознавания объектов на фото.
Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:
Сервисы рекомендаций
Нейронные сети могут использоваться для решения задач из любых отраслей, но есть тонкости. Нейросети хорошо справятся только в тех случаях, когда задача уже была решена другими способами и есть накопленный объём релевантных данных. Новая задача — это область знания, к которой нейросеть вряд ли сможет подступиться. Если помимо данных важен ещё и контекст, лучше решить задачу без помощи нейросетей.
Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.
Неправильный выбор архитектуры может привести к провалу. Бессмысленно пытаться заставить сверточную сеть, предназначенную для изображений, распознавать речь. Входные данные — спектрограммы речи — имеют другую структуру по сравнению с изображениями, и свёрточные слои будут неэффективны для их обработки. В этом случае лучше применить рекуррентную сеть, которая может последовательно обрабатывать аудиоданные и учитывать неочевидные связи в естественной человеческой речи.
Во время обучения слой Dropout случайным образом «выключает» (то есть игнорирует) определённый процент нейронов в предыдущем слое — и эти нейроны не участвуют в текущей итерации обучения. Модель вынуждена учиться по-другому, полагаясь на различные комбинации имеющихся нейронов для предсказания результата. Так слои исключения предотвращают переобучение модели — overfitting.
В отличие от полносвязных и свёрточных слоев, которые обрабатывают каждый элемент входной последовательности отдельно, рекуррентные слои используют информацию о предыдущих элементах для обработки текущего. Основная идея рекуррентности в том, что на каждом шаге обработки последовательности слой получает текущий элемент и предыдущее внутреннее состояние. Он объединяет эту информацию, обновляет свое состояние и генерирует выходной элемент. Это позволяет им эффективно работать с последовательными данными, где важны зависимости между элементами.
Как всегда бывает с технологиями на определённом уровне распространения, большинство пользователей не знает, как это устроено и работает. Пользователь взаимодействует с простым понятным интерфейсом и не представляет, что происходит под капотом. Это нормально.
Нейронные сети имитируют работу человеческого мозга, чтобы обрабатывать и анализировать данные. Они обучаются на большом объёме информации, выявляя закономерности и связи между сущностями. Это позволяет им выполнять сравнительно сложные когнитивные задачи — распознавать изображения, обрабатывать естественный язык и прогнозировать сценарии развития событий в специфических областях.
Нейросети перерабатывают терабайты данных и со временем выполняют поставленные задачи всё лучше. Раз за разом предлагая анализировать, генерировать и прогнозировать информацию по запросу, пользователь может обучить сеть выдавать нужный результат с наименьшими затратами времени.