Содержание статьи
Что такое ИИ? Узнайте об искусственном интеллекте
ИИ: истории успеха
Тем не менее ИИ остается достаточно новой и сложной технологией. Чтобы полностью раскрыть ее потенциал, чтобы создавать и применять решения на основе ИИ, необходим высокий уровень квалификации. Для достижения успеха недостаточно просто нанять специалистов по изучению данных. Необходимо использовать правильные инструменты, процессы и стратегии управления.
науки об искусственном интеллекте и имеют свою специфик Например, машинное обучение фокусируется на создании систем, которые обучаются и развиваются путем обработки и анализа данных. Разница состоит в том, что машинное обучение всегда подразумевает использование ИИ, однако ИИ не всегда подразумевает машинное обучение.
Предложение Шанахана заключается в комбинировании символических описаний GOFAI и технологий глубинного обучения. Это позволит не просто скармливать подобным системам новую информацию и ждать, пока они выведут на основе этой информации определенные шаблоны поведения и решений задач, подход Шанахана призван наделить подобные системы отправными точками к пониманию мира. Это, по его мнению, не только решит проблему прозрачности ИИ, но также и проблему передаваемого обучения, описанную Хадселлом.
Эта проблема становится еще очевиднее, если посмотреть на те сферы, где получить нужную информацию становится еще сложнее. Взять хотя бы систему здравоохранения, где ИИ мог бы использоваться для выполнения задач, связанных с машинным зрением – поиском и распознаванием злокачественных опухолей на рентгеновских снимках, например. Но доступ к таким данным, как правило, очень ограничен. Основным ограничивающим фактором здесь, по мнению Лоуренса, является нынешнее представление людей о неэтичности доступа сторонними лицами к информации подобного рода. Главная проблема, как считает Лоуренс, заключена не в поиске путей распространения информации, а в том, как сделать системы машинного обучения эффективнее и научить работать с меньшим количеством информации. И эти улучшения в эффективности, по мнению ученого, могут занять те же 60 лет, как это было в случае с машиной Уатта.
В конечном итоге все проблемы, стоящие на пути создания настоящего ИИ, заключены в следующем: в том объеме информации, который необходимо будет в них вложить; в нашей неспособности создать ИИ, который мог бы одинаково хорошо справляться сразу с несколькими задачами; ну и на самом деле мы понятия не имеем, как подобные системы должны работать на самом деле. Технологии машинного обучения в 2016 году уже способны творить чудесные вещи, однако эти вещи порой бывает сложно объяснить даже для самих создателей. Не говоря уже о том, каких денег все это стоит. Разберем более подробно те сложности, с которыми приходится сталкиваться инженерам ИИ в настоящее время.
Решение может скрываться в так называемых прогрессивных нейронных сетях – объединении независимых систем глубинного обучения в единое целое для более эффективной работы с информацией. В опубликованной научной статье, разбирающей этот вопрос, Хадселл и ее команда исследователей рассказали о том, как их прогрессивная нейронная сеть смогла адаптироваться в игре Pong, условия в которой каждый раз в некоторой степени отличались (в одном случае были изменены цвета; в другом – перепутано управление), гораздо быстрее, чем «обычная» нейронная сеть, которой приходилось обучаться каждый раз заново.
Помощь в освоении ИИ
И эта проблема гораздо значимей, чем могла показаться на первый взгляд. Когда в феврале прошлого года DeepMind объявила о том, что создала систему, которая может играть в 49 игр Atari, это действительно можно было рассматривать как большое достижение. Но в конечном итоге оказалось, что после того, как система завершает прохождение одной игры, ее каждый раз необходимо переобучить играть в другую. Хадселл отмечает, что мы не можем научить систему играть во все игры сразу, так как правила каждой будут смешиваться друг с другом и в конечном итоге мешать выполнять поставленную задачу. Каждый раз приходится учить машину заново, и при этом система каждый раз «забывает» то, как играть в предыдущую игру.
Большие компании вроде Google, Facebook и Microsoft – именно они те самые современные «угледобытчики». Они имеют доступ к неограниченному объему информации, поэтому могут создавать неэффективные системы машинного обучения и затем их улучшать.
ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям
Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.
Еще одной ключевой проблемой, стоящей на пути разработки действительно глубинных моделей машинного обучения, является тот факт, что все наши нынешние системы ИИ, по сути дела, очень глупы. По мнению Райа Хадселл, научной сотрудницы DeepMind компании Google, эти системы на самом деле уже сейчас можно научить выполнять задачи по распознаванию котов, научить играть и при этом сделать их весьма эффективными в выполнении этих задач. Но «на настоящий момент в мире нет ни одной полноценной нейронной сети и методов, которые позволили бы натренировать ее на распознавание изображений, игры в Space Invaders и созерцание музыки». В свою очередь, именно нейронные сети являются ключевой базой для создания систем глубинного обучения машин.
Метод оказался весьма обещающим и в недавнем случае применялся для настройки роботизированных рук, ускорив процесс их обучения с недели всего до одного дня. К сожалению, и в этом методе есть свои ограничения. Хадселл отмечает, что в случае с прогрессивными нейронными сетями процесс обучения нельзя свести к простому добавлению новых задач в их память. Если продолжать объединять такие системы вместе, то рано или поздно вы придете к «слишком сложной модели, отследить которую будет невозможно». В этом случае речь пойдет уже о другом уровне. Об уровне, при котором различные задачи в основном будут выполняться аналогичным образом. Создать ИИ, способный разрабатывать дизайн стульев, и создать ИИ уровня человеческого интеллекта, способного писать поэмы и решать дифференциальные уравнения, – это совсем не одно и то же.
Тем не менее внедрение ИИ связано с определенными трудностями. Лишь немногие компании задействуют полный потенциал ИИ, и тому есть несколько причин. Например, если они не используют облачные вычисления, проекты машинного обучения часто требуют больших вычислительных ресурсов. Они также сложны в создании и требуют опыта, который пользуется большим спросом, но его не хватает. Знание того, когда и где включать эти проекты, а также когда обращаться к третьей стороне, поможет свести к минимуму эти трудности.
Отличным примером этой проблемы служит эксперимент Политехнического университета Виргинии. Исследователи создали для нейронной сети систему слежения, которая записывает, с каких пикселей цифрового изображения компьютер начинает свой анализ. Исследователи показали нейронной сети изображения спальни и задали ей вопрос: «Что висит на окнах?». Машина, вместо того чтобы сразу посмотреть на окна, начала анализировать изображения, начиная с пола. В поле ее зрения попала кровать и машина дала ответ: «на окнах висят шторы». Ответ оказался правильный, но только потому, что система была «научена» работе с ограниченным объемом данных. На основе показанной картинки нейронная сеть сделала вывод, что если на фото изображена спальня, то на окнах, вероятнее всего, должны быть шторы. Поэтому, когда в поле ее зрения попала деталь, которая обычно присутствует в любой спальне (в данном случае кровать), она не стала анализировать изображение дальше. Она, возможно, даже не видела эту кровать, она видела шторы. Логично, но очень уж поверхностно и притянуто. Кроме того, во многих спальнях нет штор!