Содержание статьи
Как написать свою первую нейросеть на Python
Несколько финальных замечаний
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Если надежды на создание собственного AI, который сможет приблизиться к уровню человека, не разбились о гору теоретической литературы, можно приступать к изучению языков. Есть 3 языка программирования, которые стали популярными в области искусственного разума:
Когда у новичка появляется первая мысль о создании AI и программировании в целом, глаза наполняются блеском. Сразу скажем, что все наши преподаватели прошли этот этап. Однако он заканчивается на грустной ноте, потому что начинающий разработчик сталкивается с тысячами страниц скучной теории, без которой создать ИИ невозможно.
Этот язык программирования разработали для выполнения статистических вычислений и математического анализа, что делает R лучшим выбором для работы с ботми. У него большая коллекция библиотек для работы со статистикой (например, caret, mlr и другие), помогающих реализовать точные AI-модели. Хотя R сложнее Python, освоить данный язык не так трудно, как кажется. У него логичный синтаксис, в открытых источниках достаточно информации для изучения.
Во время обучения рекомендуется регулярно заниматься проверкой промежуточных результатов. В зависимости от качества материала качество работы AI может не только расти, но и падать. К примеру, недавно ChatGPT «отупел» в ходе общения с человеком, из-за чего потерял возможность правильно определять тип числа.
Главный аспект создания искусственного интеллекта — разработка моделей и алгоритмов, которые способны самостоятельно обучаться с опорой на поступающие данные. ИИ постоянно находится в процессе совершенствования навыков и способностей, что позволяет сделать результаты работы лучше и подготовить систему к решению новых задач.
Стадия 4. Азарт
Если вы только начинаете осваивать область AI и создаете простых ботов, стоит на листке бумаги разобрать все возможные алгоритмы игры «Крестики-нолики» с полем 3 на 3. Она подходит для обучения, поскольку имеет крайне мало возможных действий. Новичкам нужно выяснить:
Да, можно, и даже более сложную. В этом примере мы использовали только одну математическую библиотеку и четыре метода из нее, чтобы показать расчеты нагляднее. Но есть множество специальных библиотек и фреймворков для создания именно нейросетей, например Tenzorflow или Pandas. Они ускоряют процесс. Например, можно создать слой из нескольких десятков, а то и сотен нейронов, в одну строчку. А еще парой строчек добавить новые слои и задать правила для обучения.
Далеко не все правильно понимают, что скрывается за термином «искусственный интеллект» или AI (Artificial Intelligence). В сети встречаются объяснения, что ИИ — компьютер или система, способная думать и принимать разумные решения. Это не совсем верно. Искусственный интеллект — это алгоритмы, способные решать сложные задачи, для которых требуется наличие человеческого интеллекта.
Это распространенный язык для работы с ИИ и нейросетями. У популярности есть 2 причины: гибкость и простота изучения. Кроме того, у Python большое сообщество, поэтому в интернете можно найти готовые библиотеки и фреймворки, упрощающих реализацию ботов. Например, TensorFlow, PyTorch и Keras помогут создать сложные ML-модели ChatGPT и LLaMA.
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.
Разработчики AI должны стремиться к созданию этичной технологии, которая сделает человеческую лучше, а не добавит новые трудности и угрозы, включая захват мира, о котором уже много лет пишут фантасты. Терминатором управляет совершенный ИИ, до которого, конечно, далеко, но когда-то полет на самолете казался фантастикой.
Когда технологическая основа готова, а основные алгоритмы прописаны и вручную протестированы, начинается длительный период тренировки. Чтобы сделать самостоятельный и универсальный интеллект, необходимо углубляться в изучение теории, а также хрестоматийных пособий, например:
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.