Кто изобрел нейросеть

0
44

Нейронные сети, перцептрон

Структура нейронной сети

Основные принципы работы нейронных сетей были описаны еще в 1943 году Уорреном Мак-Каллоком и Уолтером Питтсом [1] . В 1957 году нейрофизиолог Фрэнк Розенблатт разработал первую нейронную сеть [2] , а в 2010 году большие объемы данных для обучения открыли возможность использовать нейронные сети для машинного обучения.

Создание Midjourney и его уникальной возможности генерации изображений на основе текстовых подсказок представляет собой интересное развитие в области искусственного интеллекта и цифрового творчества. Инициатором этого проекта стал Дэвид Хольц – выдающийся математический гений и предприниматель-ренегат, чьи достижения в области технологии трехмерного управления движением внесли значительный вклад в цифровую индустрию. Он является техническим директором и соучредителем компании Leap Motion, базирующейся в Сан-Франциско.

Например, чтобы научить нейросеть управлять беспилотным автомобилем, нужно смоделировать поведение человека-водителя, который во время движения должен распознавать дорожные знаки и разметку, реагировать на сигналы светофора, прогнозировать поведение других водителей и замечать людей, которые оказались на дороге. Для решения каждой из этих задач в беспилотном автомобиле работает отдельная нейросеть [3] .

Хорошим примером биологической нейронной сети является человеческий мозг. Наш мозг — сложнейшая биологическая нейронная сеть, которая принимает информацию от органов чувств и каким-то образом ее обрабатывает (узнавание лиц, возникновение ощущений и т.д.). Мозг же, в свою очередь, состоит из нейронов, взаимодействующих между собой.

Помимо входного и выходного слоев эти нейронные сети содержат промежуточные, скрытые слои. Такие сети обладают гораздо большими возможностями, чем однослойные нейронные сети, однако методы обучения нейронов скрытого слоя были разработаны относительно недавно.

Как правило, в большинстве нейронных сетей есть так называемый входной слой, который выполняет только одну задачу — распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений. В остальном нейронные сети делятся на основные категории, представленные ниже.

Перцептрон

Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ», а как только мы подадим немного измененный сигнал, вместо правильного ответа получим бессмыслицу. Мы ждем от сети способности обобщать какие-то признаки и решать задачу на различных входных данных. Именно с этой целью и создаются обучающие выборки.

Однако искусственный интеллект был придуман задолго до сегодняшних технологий. Первыми, кто придумал нейросеть, были американский математик Уоррен Маккаллок и нейрофизиолог Уолтер Питтс. В 1943 году эти ученые создали первую модель биологического нейрона, что стало отправной точкой для развития нейронных сетей в будущем.

Руководит OpenAI правление, в которое входят Грег Брокман, Илья Суцкевер, Сэм Олтман и другие внештатные члены. По слухам, в ближайшем будущем организация планирует расширить свое влияние в сфере робототехники и уже установила партнерские отношения с крупными игроками в технологической индустрии.

Сегодня мы бросим взгляд на историю создания нейросетей и проследим их путь к современному состоянию. Это важно не только для специалистов в области искусственного интеллекта и компьютерных наук, но и для всех интересующихся, кто придумал нейросеть и какие выдающиеся умы лежат в основе технологий, ставших частью нашей жизни.

Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям на станках. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.

Это определение «обучения нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей, каждая из которых в отдельности состоит из нейронов одного типа (с одинаковой функцией активации). Наш мозг обучается благодаря изменению синапсов — элементов, которые усиливают или ослабляют входной сигнал.

ЧИТАТЬ ТАКЖЕ:  IT-курсы онлайн: ключ к новым знаниям и навыкам

Источники информации

В последние годы мы все чаще слышим о нейросетях, которые в ближайшем будущем должны заменить многие профессии. И нам кажется, что идея создания искусственного интеллекта появилась совсем недавно. Однако нейронные сети от первых разработок прошли долгий путь длиной более полувека, и все еще находятся на начальной стадии развития. Нейросеть способна мгновенно обработать большое количество информации и работает по принципу человеческого мозга, но не может решать множество простых задач, с которыми человек сталкивается каждый день – распознавание эмоций, сарказм, понимание иносказаний.

Чтобы обучать эту функцию, сначала надо выбрать функцию ошибки, которую потом можно оптимизировать градиентным спуском. Число неверно классифицированных примеров не подходит на эту кандидатуру, потому что эта функция кусочно-гладкая, с массой разрывов: она будет принимать только целые значения и резко меняться при переходе от одного числа неверно классифицированных примеров к другому. Поэтому использовать будем другую функцию, так называемый критерий перцептрона: [math]E_P(w) = -\sum_ y(x)(\sigma(w^T \cdot x))[/math] , где [math]M[/math] — множество примеров, которые перцептрон с весами [math]w[/math] классифицирует неправильно.

С появлением больших объемов данных, мощных вычислительных ресурсов и улучшенных алгоритмов, нейронные сети особенно быстро стали развиваться в последнее десятилетие. Из ученых, кто придумывает нейросеть в 2023 году, можно выделить следующие имена: Джеффри Хинтон, Андрю Янг, Джейф Дин, Илья Суцкевер. Ученые активно занимаются исследованием искусственных нейронных сетей и вносят весомый вклад в развитие высоких технологий будущего.

Для построения искусственной нейронной сети будем использовать ту же структуру. Как и биологическая нейронная сеть, искусственная состоит из нейронов, взаимодействующих между собой, однако представляет собой упрощенную модель. Так, например, искусственный нейрон, из которых состоит ИНС, имеет намного более простую структуру: у него есть несколько входов, на которых он принимает различные сигналы, преобразует их и передает другим нейронам. Другими словами, искусственный нейрон — это такая функция [math]\mathbb^n \rightarrow \mathbb[/math] , которая преобразует несколько входных параметров в один выходной.

Однослойный персептрон (англ. Single-layer perceptron) — перцептрон, каждый S-элемент которого однозначно соответствует одному А-элементу, S-A связи всегда имеют вес 1, а порог любого А-элемента равен 1. Часть однослойного персептрона соответствует модели искусственного нейрона.

В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Хольц получил степень доктора философии и начал свою карьеру как консультант НАСА и Института Макса Планка. Математические открытия и научные исследования молодого ученого привели к созданию Leap – одной из самых мощных в мире технологий трехмерного управления движением. На момент значимых открытий в сфере высоких технологий Дэвид Хольцу был всего 24 года.

В основе перцептрона лежит математическая модель восприятия информации мозгом. Разные исследователи по-разному его определяют. В самом общем своем виде (как его описывал Розенблатт) он представляет систему из элементов трех разных типов: сенсоров, ассоциативных элементов и реагирующих элементов.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь