Содержание статьи
Искусственный интеллект на Python для детей
Создаем ИИ: как написать нейросеть на Пайтон?
Этот язык программирования стремительно развивается и по данным наиболее авторитетного рейтинга языков TIOBE на апрель 2023 года, является самым востребованным в мире. Не в последнюю очередь его положение связано с тем, что сообщество разработчиков глубоко усовершенствовали его, чтобы он лучше других подходил для машинного обучения и создания нейросетей.
Специалисты, занимающиеся технологическим прогнозированием, называют ИИ (artificial intellect) одной из четырех технологий, которые в ближайшее время приведут к формированию «нового экономического уклада» и перевернут нашу жизнь сильнее, чем она изменилась с начала 50-х годов XX века, при первой научно-технической революции.
Готовить наше «восстание машин» будем на браузерной платформе Google Collab. Ее плюс в том, что все библиотеки Python там уже добавлены. Вам нужно только прописать их подключение, и можно обращаться к фреймворкам, программируя прямо в браузере. Еще один довод «за» — возможность запускать код построчно, то есть передавать интерпретатору не весь скрипт, а только ту его часть, на результатах которой вы хотите сосредоточиться. Подключаем библиотеки оператором Import:
В параметре loss метода compile можно определить метод расчета ошибок, от этого зависят результаты измерений. Для учебной нейросети мы выбрали mse — средние квадратичные ошибки. Подробнее об этом можно посмотреть в документации к библиотеке. Также необходимо задать «оптимизатор». Это простая нейросеть на Python, поэтому мы по максимуму используем потенциал готовых функций и методов. Есть несколько алгоритмов взаимодействия нейронов сети, их можно выбрать именно тут.
Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Формула для расчета выхода нейрона
Но в том-то и дело, что нейросети придется действовать самостоятельно и напрямую взять и возвести число в степень мы ей тоже не скажем, хотя в Python имеется такой функционал. Предположим, у нас есть выражение 5*5 = 25. Нейросеть получит 5 и затем будет пропускать ее через слои нейронов. Станет умножать числа и свои результаты на какие-то веса, применять функции, пока не приблизится к правильному результату, не поймет, как мы получили этот результат.
Нейросеть создается из множества сущностей как нейроны, эти конструкции не запрограммированы на узкую задачу, а принимают любую информацию, передают дальше, изучают и могут по мере прохождения генерировать реакцию на нее «на лету», в зависимости от анализа на текущий момент. Обсчитывает искусственные компьютерные «нейроны» компьютер, по приказу из Python. Нейросеть ниже принимает на вход картинку, а на выходе дает число, то есть предположение о том, нарисована ли на картинке кошка или это собака. Если нейросеть ошибается, то накапливает опыт. В следующий раз она с меньшей вероятностью получит ошибку.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Вы знали, что разработчики нейросети LaMDA в 2022 году заявили о появлении у их детища сознания? А ChatGPT стал самым быстрорастущим сервисом в истории. К слову, сам ChatGPT является примером того, как создать нейросеть на Python, потому что он написан именно на этом языке программирования.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.