Как сделать простейшую нейросеть

0
17

Как сделать свою нейросеть за 10 минут на Python

Вот оно, обучение!

Говоря проще, ИНС можно назвать неким «черным ящиком», превращающим входные данные в выходные данные. Если же посмотреть на это с точки зрения математики, то речь идет о том, чтобы отобразить пространство входных X-признаков в пространство выходных Y-признаков: X → Y. Таким образом, нам надо найти некую F-функцию, которая сможет выполнить данное преобразование. На первом этапе этой информации достаточно в качестве основы.

Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.

Допустим, передадим ей значение 1.1.0. Как вы помните, во входных тренировочных данных такого значения у нас не было. В коде задействовать нашу уже обученную нейросеть можно также очень просто. Запускаем получившийся код и видим результат. Наша нейронная сеть прекрасно справилась и поняла, что очень большая вероятность того, что на выходе должна быть цифра 1. И то, что мы сейчас с вами запрограммировали, это простейшая нейронная сеть, которая называется Перцептрон. Но даже с такой простой нейронкой уже можно решить решать какие-то более-менее реальные задачи.

Для уменьшения ошибки нейронной сети надо поменять весовые коэффициенты, причем послойно. Каким же образом это осуществить? Ничего сложного в этом нет: надо воспользоваться методом градиентного спуска. То есть нам надо рассчитать градиент по весам и сделать шаг от полученного градиента в отрицательную сторону. Давайте вспомним, что на этапе прямого распространения мы запоминали входные сигналы, а во время обратного распространения ошибки вычисляли дельты, причем послойно. Как раз ими и надо воспользоваться в целях нахождения градиента. Градиент по весам будет равняться не по компонентному перемножению дельт и входного вектора. Дабы обновить весовые коэффициенты, снизив таким образом ошибку нейросети, нужно просто вычесть из матрицы весов итог перемножения входных векторов и дельт, помноженный на скорость обучения. Все вышеперечисленное можно записать в следующем виде:

Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:

Из него мы используем метод exp, который нужен для вычисления экспонента и всех элементов входного массива. Но нам это в принципе не важно. Как я ранее говорил, это просто формула, которую мы применяем. И не обязательно быть математиком, чтобы это делать. Затем нам нужно объявить тренировочные данные. С этой целью мы создадим две переменные. Первая это training inputs. Она будет хранить в себе массив 4 на 3 с соответствующими входными данными, которые я наглядно . показывал ранее на табличке.

Формула корректировки весов

Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.

Дабы найти значение ошибки E, надо найти сумму квадратов разности векторных значений, которые были выданы нейронной сетью в виде ответа, а также вектора, который ожидается увидеть при обучении. Еще надо будет найти дельту каждого слоя и учесть, что для последнего слоя дельта будет равняться векторной разности фактического и ожидаемого результатов, покомпонентно умноженной на векторное значение производных последнего слоя:

Давайте внимательно посмотрим на него. Вышенаписанная формула — это не что иное, как определение умножения матрицы на вектор. И в самом деле, если мы возьмем матрицу W размера n на m и выполним ее умножение на X размерности m, то мы получим другое векторное значение n-размерности, то есть как раз то, что надо.

Все, что сейчас произошло у вас в мозгу, мы называем мышлением. Мозг принял входные данные, увидел выходные, вычислил взаимосвязь и впоследствии научился контролировать как их распознавать? Причем уже без необходимости в повторном вычислении взаимосвязи входных и выходных данных. Ну а нам осталось только воспроизвести этот же процесс в коде, чем мы сейчас и займемся. Но сначала давайте наглядно увидим, как будет выглядеть наш перцептрон. У нас будут входные данные, будет сам нейрон, конечно же результат и синапсы. Как уже понятно, синапсы это некая связь между . входными данными и тем, что попадет в нейрон. Соответственно, у нас есть какие-то входные данные, это будут нолики и единицы, своего рода аналог true и false в булевом типе данных.

Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.

ЧИТАТЬ ТАКЖЕ:  Когда говорят об искусственном интеллекте можно услышать о методах машинного обучения

И теперь, когда мы понимаем общий принцип действия, давайте перейдем к написанию кода, чтобы более наглядно увидеть реализацию всего, что я только что рассказывал. Но сначала в Python нам нужно установить модуль numpy. Он нам понадобится для легкой и высокопроизводительной работы с многомерными массивами. В описании я оставлю ссылку на репозиторий numpy в PyPy. Устанавливается он, как и любой другой модуль в Python, без каких-либо проблем. Теперь в коде начнем с импорта numpy, а затем объявим функцию sigmoid для реализации нашей функции активатора. Уже здесь нам пригождается numpy.

Последовательность нейрослоев часто применяют для более глубокого обучения нейронной сети и большей формализации имеющихся данных. Именно поэтому, чтобы получить итоговый выходной вектор, нужно проделать вышеописанную операцию пару раз подряд по направлению от одного слоя к другому. В результате для 1-го слоя входным вектором будет являться X, а для последующих входом будет выход предыдущего слоя. То есть нейронная сеть может выглядеть следующим образом:

Вторая переменная это Training Outputs. Она хранит в себе массив 1 на 4, и это наши ожидаемые выходные данные. Также не забываем транспонировать вторую переменную, чтобы ее содержание поменялось и было 4 на 1. Дальше нам надо инициализировать веса. Ранее я уже говорил, что мы будем это делать при помощи генератора случайных чисел. Чтобы и у вас, и у меня получались одинаковые случайные числа, давайте договоримся и укажем сид генератора в значении 1.

Переходим к обучению

И все это нужно будет повторить, например, 20 тысяч раз. В коде этот алгоритм у нас будет выглядеть следующим образом. Если вы хотите более подробно на математическом уровне узнать о том, как именно устроен данный алгоритм обучения нейросети, то я в описании оставлю ссылку на статью, которая на русском языке понятно объясняет, как это все работает. Ну а теперь мы запустим код, и как видите, после запуска мы получаем результат, больше похожий на правду. И по сути уже сейчас наша нейронная сеть обучена. Она сама научилась выявлять взаимосвязь между входными и выходными данными. Давайте проверим, как она справится в какой-то новой для себя ситуации.

Под искусственной нейронной сетью (ИНС) понимают математическую модель (включая ее программное либо аппаратное воплощение), которая построена и работает по принципу функционирования биологических нейросетей — речь идет о нейронных сетях нервных клеток живых организмов.

Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.

Затем нам понадобится веса для синапсов. Именно они будут выявлять взаимосвязь между входными данными и результатом. Сейчас просто запомните, что именно веса будут оказывать наибольшую роль в определении результата и чуть позже в коде мы воспользуемся популярным решением для инициализации весов. В частности, веса будут инициализироваться генератором случайных чисел. Это довольно важно, потому что если бы был способ найти идеальные начальные веса, то дальнейшее обучение сети просто не требовалось бы.

И позже я об этом еще покажу и расскажу в коде. Сам подход к обучению нейросети, то есть подразумевает старт с непрозрачностью, правильной позиции в поисках правильной. При этом довольно важен тот факт, что начальные веса не могут быть полностью одинаковыми, иначе они так одинаковыми в процессе обучения и останутся. Ну а раз мы все равно не знаем, какие должны быть веса, и нельзя делать их одинаковыми, то идея взять случайные веса в общем случае выглядит очень даже хорошо. И как я уже ранее сказал, именно благодаря весам нейрон будет определять результат.

И, конечно же, не забудем про генетический алгоритм, или же Genetic Algorithm. Тем не менее, основу основ обучения всех нейронок сегодня составляет именно метод обратного распространения. Именно им мы сейчас и воспользуемся. В коде этот метод будет выглядеть следующим образом. Итак, мы помним, что верными решениями для нас являются значения 0110.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь