Как сделать нейросеть python

0
22

Как сделать свою нейросеть за 10 минут на Python

Что такое нейросеть

Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.

И, конечно же, не забудем про генетический алгоритм, или же Genetic Algorithm. Тем не менее, основу основ обучения всех нейронок сегодня составляет именно метод обратного распространения. Именно им мы сейчас и воспользуемся. В коде этот метод будет выглядеть следующим образом. Итак, мы помним, что верными решениями для нас являются значения 0110.

Затем нам понадобится веса для синапсов. Именно они будут выявлять взаимосвязь между входными данными и результатом. Сейчас просто запомните, что именно веса будут оказывать наибольшую роль в определении результата и чуть позже в коде мы воспользуемся популярным решением для инициализации весов. В частности, веса будут инициализироваться генератором случайных чисел. Это довольно важно, потому что если бы был способ найти идеальные начальные веса, то дальнейшее обучение сети просто не требовалось бы.

А начнем из простого и распространенного примера. Допустим, у нас есть какая-то проблема, которую наша нейронка должна уметь решать. Во всех учебниках и уроках по нейронкам обычно можно встретить вот эту таблицу. Здесь вы видите набор входных и выходных данных. Можете попробовать поставить видео на паузу и вычислить самостоятельно связь между этими данными. Хотя здесь нет ничего сложного, я думаю, уже видно, что в выходном столбце оказываются значения из первого столбца входного массива. На данном этапе ваш мозг, при помощи своих нейронных связей, синапсов и кое-чего еще, уже смог решить данную проблему и научиться, как ее решать впоследствии.

Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.

Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.

Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.

Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:

Как можно улучшить нейронную сеть

Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая создает картинки по фото

Конечно, после сигмоида мы никогда не получим такие значения, но и результат после обучения нашей нейронки сложно назвать хоть чем-то хотя бы близко похожим на то, что нам нужно. И происходит это потому, что метод обратного распространения подразумевает многократное обучение нейронной сети. В коде которого будет производиться регулирование в соответствии с уже известными алгоритмами выравнивания весов.

Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.

Допустим, передадим ей значение 1.1.0. Как вы помните, во входных тренировочных данных такого значения у нас не было. В коде задействовать нашу уже обученную нейросеть можно также очень просто. Запускаем получившийся код и видим результат. Наша нейронная сеть прекрасно справилась и поняла, что очень большая вероятность того, что на выходе должна быть цифра 1. И то, что мы сейчас с вами запрограммировали, это простейшая нейронная сеть, которая называется Перцептрон. Но даже с такой простой нейронкой уже можно решить решать какие-то более-менее реальные задачи.

И все это нужно будет повторить, например, 20 тысяч раз. В коде этот алгоритм у нас будет выглядеть следующим образом. Если вы хотите более подробно на математическом уровне узнать о том, как именно устроен данный алгоритм обучения нейросети, то я в описании оставлю ссылку на статью, которая на русском языке понятно объясняет, как это все работает. Ну а теперь мы запустим код, и как видите, после запуска мы получаем результат, больше похожий на правду. И по сути уже сейчас наша нейронная сеть обучена. Она сама научилась выявлять взаимосвязь между входными и выходными данными. Давайте проверим, как она справится в какой-то новой для себя ситуации.

Хауди-хо, друзья! Недавно вы просили меня рассказать, как создать свою собственную нейронную сеть с нуля. Поэтому сегодня мы с вами этим и займемся. Создадим простейшую нейронную сеть, а именно Перцептрон. И на самом деле это не так сложно, как может показаться на первый взгляд. Дело в том, что нейронные сети как таковые базируются на определенных алгоритмах и математических функциях. Здесь можно встретить сигмоиду, линейную регрессию и угродительность. Но как мы знаем, чтобы пользоваться формулами, не обязательно понимать, как они работают.

Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.

В учебных целях очень часто применяют самую простейшую из них, линейную. Ее еще называют единичный скачок или жесткая пороговая функция. Выглядит в коде она следующим образом. Мы же будем применять более адекватную и подходящую функцию активатора, а именно сигмоид.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь