Что такое экспертные системы в искусственном интеллекте

0
14

1.       Экспертные системы

Экспертные системы в области искусственного интеллекта

Экспертная система должна демонстрировать компетентность, т.е. достигать в конкретной предметной области того же уровня, что и специалисты-эксперты. Недостаточно находить хорошие решения, это надо делать быстро. Системы должны иметь не только глубокое, но и достаточно широкое понимание предмета. Методы нахождения решений проблем достигаются на основе рассуждений, исходящих из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Такие свойства наименее разработаны в компьютерных экспертных системах, но именно они присуши специалистам высокого уровня.

Зарубежный опыт показывает, что экспертные системы разрабатываются в основном в университетах, научно-исследовательских центрах и коммерческих организациях, в том числе и для финансовой индустрии. В сфере финансового обслуживания эти системы помогают страховым компаниям анализировать и оценивать коммерческий риск, устанавливать размеры ссуд при кредитовании организаций, составлять сметы проектов и т.д.

Назначение экспертных систем – формирование и вывод рекомендаций в зависимости от текущей ситуации, которая описывается совокупностью сведений, данных, вводимых пользователем в диалоговом режиме. Выдаваемые компьютером рекомендации должны соответствовать рекомендациям специалиста высокой квалификации.

Экспертная система достигает более высокой эффективности за счет перебора большого числа альтернатив при выборе решения, опираясь на высококачественный опыт группы специалистов, анализирует влияние большого объема новых факторов, оценивая их при построении стратегий, добавляя возможности прогноза.

Пользовательский интерфейс является наиболее важной частью программного обеспечения экспертной системы. Этот компонент принимает запрос пользователя в читаемой форме и передает его в механизм вывода. После этого он отображает результаты пользователю. Другими словами, это интерфейс, который помогает пользователю общаться с экспертной системой.

Экспертная система в ИИ может решить многие проблемы, которые обычно требуют участия человека-эксперта. Он основан на знаниях, полученных от эксперта. Искусственный интеллект и экспертные системы способны выражать и рассуждать о некоторой области знаний. Экспертные системы были предшественниками сегодняшнего дня. системы искусственного интеллекта, глубокого обучения и машинного обучения.

Компоненты экспертной системы

Но главное, что огромный объем знаний, которым обладают эксперты-специалисты (профессиональные знания и знания о мире и действующих в нем законах), не удается пока встроить в интеллектуальную систему, тем более столь специализированную, какой является любая экспертная система.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая делает песни голосами знаменитостей

Искусственная компетентность экспертных систем не заменяет полностью человека. Эксперт-человек способен реорганизовать информацию и знания и использовать их для синтеза новых знаний. В области творческой деятельности люди обладают большими способностями и возможностями по сравнению с самыми умными системами. Эксперты справляются с неожиданными поворотами событий и, используя новые подходы, способны проводить аналогии из других предметных областей. Эксперты адаптируют к изменяющимся условиям и приспосабливают свои стратегии к новым обстоятельствам в более широком диапазоне проблем и задач. Экспертные системы менее приспособлены к обучению на уровне новых концепций и новых правил. Они оказываются не столь эффективны и мало пригодны в тех случаях, когда надо учитывать всю сложность реальных задач.

Эксперты могут непосредственно воспринимать весь комплекс входной информации: символьной, визуальной, графической, текстовой, звуковой, осязательной, обонятельной. У экспертной системы есть только символы, с помощью которых представлены базы знаний, воплощающие те или иные концепции. Преобразование сенсорной информации в символьную сопровождается потерей части информации.

Но область применения экспертных систем расширяется. Кроме охвата различных областей деятельности, одним из наиболее важных последствий разработки экспертных систем является модификация знаний. По мере того как разработчики будут строить большие, сложные базы знаний, появляется рынок знаний, независимых от компьютерных систем. Появятся средства обучения для изучающих определенную прикладную область. Коммерческим продуктом станут метазнания, т.е. знания об оптимальных стратегиях и процедурах использования предметных знаний. Развитие экспертных систем в интеллектуальные состоит в слиянии концепций оборудования, средств их создания (языков) и самих экспертных систем. Объединение интеллектуальных систем особенно эффективно в сложных инфраструктурах. Интеллектуальные системы уже разрабатываются и внедряются за рубежом для коммерческого использования.

Создание и использование экспертных систем является одним из концептуальных этапов развития информационных технологий. В основе интеллектуального решения проблем в некоторой предметной области лежит принцип воспроизведения знаний опытных специалистов — экспертов. Исходя из собственного опыта, эксперт анализирует ситуацию и распознает наиболее полезную информацию, оптимизирует принятие решений, отсекая тупиковые пути.

Экспертная система это интерактивная и надежная компьютерная система принятия решений, которая использует как факты, так и эвристику для решения сложных задач принятия решений. Это считается высшим уровнем человеческого интеллекта и опыта. Целью экспертной системы является решение наиболее сложных проблем в конкретной области.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь