Содержание статьи
Обучение нейросети: методы и алгоритмы
Пишем код
Давайте внимательно посмотрим на него. Вышенаписанная формула — это не что иное, как определение умножения матрицы на вектор. И в самом деле, если мы возьмем матрицу W размера n на m и выполним ее умножение на X размерности m, то мы получим другое векторное значение n-размерности, то есть как раз то, что надо.
Один нейрон может превратить в одну точку входной вектор, но по условию мы желаем получить несколько точек, т. к. выходное Y способно иметь произвольную размерность, которая определяется лишь ситуацией (один выход для XOR, десять выходов, чтобы определить принадлежность к одному из десяти классов, и так далее). Каким же образом получить n точек? На деле все просто: для получения n выходных значений, надо задействовать не один нейрон, а n. В результате для каждого элемента выходного Y будет использовано n разных взвешенных сумм от X. В итоге мы придем к следующему соотношению:
Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?
Как видно из названия, в алгоритме используются приемы, характерные для поведения генов живых организмов. В начале процесса создается случайная популяция нейросетей, каждая из которых имеет случайно заданные параметры. Далее она подвергается естественному отбору, успешность которого определяется поставленной задачей (например, классификацией изображений).
Он заключается в многократном повторении двух действий — прямого и обратного. Прямое действие — это передача входных данных через нейросеть и вычисление прогнозируемого результата. Данные от входного узла к выходному могут передаваться большим количеством различных путей. Правильным же считается только один, который сопоставляет входные данные с нужными выходными. Поиск этого пути в рассматриваемом алгоритме ведется с помощью петли обратной связи. Делается это следующим образом:
Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.
Архитектура нейронных сетей
Понятие машинного обучения неразрывно связано с нейросетями. Нейронная сеть является методом в области искусственного интеллекта, который учит компьютеры работать с данными так же, как человеческий мозг. Важно понимать, что нейросети — это не мыслящие объекты, наделенные сознанием. Это сложнейшая база данных с огромным количеством формул.
Алгоритм обратного распространения вносит решающий вклад в обучение глубоких нейросетей с несколькими слоями. Он позволяет эффективно оптимизировать веса узлов нейронной сети, в том числе в сложных архитектурах с большим количеством параметров. Помимо стандартного варианта такого алгоритма существуют его расширенные и продвинутые версии, способные адаптивно регулировать скорость обучения (например, Adam или RMSprop).
Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:
Под искусственной нейронной сетью (ИНС) понимают математическую модель (включая ее программное либо аппаратное воплощение), которая построена и работает по принципу функционирования биологических нейросетей — речь идет о нейронных сетях нервных клеток живых организмов.
Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.
Последовательность нейрослоев часто применяют для более глубокого обучения нейронной сети и большей формализации имеющихся данных. Именно поэтому, чтобы получить итоговый выходной вектор, нужно проделать вышеописанную операцию пару раз подряд по направлению от одного слоя к другому. В результате для 1-го слоя входным вектором будет являться X, а для последующих входом будет выход предыдущего слоя. То есть нейронная сеть может выглядеть следующим образом:
Вывод
Еще одним подвидом ML является трансферное обучение. Оно подразумевает использование знаний, полученных при решении одной задачи, для повышения эффективности работы над другой задачей. Процесс включает предварительное обучение на большом массиве данных и последующую точную настройку под специфику новой целевой задачи. Трансферное обучение в некоторых случаях позволяет существенно сэкономить время и ресурсы. Особенно оно актуально для ситуаций, когда необходимые исходные данные слишком дороги или ограничены для получения.
В этой статье мы рассмотрели основные типы и методы обучения нейросетей. Это направление продолжает активно развиваться и считается одним из самых перспективных в сфере искусственного интеллекта. В будущем ожидается появление еще более эффективных методов и алгоритмов, которые позволят нейронным сетям решать максимально сложные задачи, сейчас доступные только человеку.
Отдельно стоит рассмотреть такой метод, как обучение с подкреплением. Это разновидность обучения без учителя, поскольку здесь также не используются помеченные данные. Суть метода заключается во взаимодействии сети с окружающей средой и получении сигналов обратной связи в виде поощрений и наказаний. Нейросеть учится выполнять такие действия, которые со временем приведут к максимальному вознаграждению.
Машинное обучение (Machine Learning или сокращенно ML) — одно из самых сложных и перспективных направлений развития искусственного интеллекта (ИИ). Фактически оно представляет собой набор приемов, алгоритмов и методов, позволяющих ИИ учиться и решать задачи не в строгих рамках, заданных программой, а на базе постоянного совершенствования знаний и накопления опыта. Именно таким образом в течение жизни учимся и мы с вами.
Но ее легко получить путем увеличения количества нейронов. Давайте попробуем реализовать обучение с тремя нейронами в скрытом слое и одним выходным (выход ведь у нас только один). Чтобы все получилось, создадим массив X и Y, имеющий обучающие данные и саму нейронную сеть:
Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.