Содержание статьи
Применение ИИ в бизнесе
Сбор информации с помощью анализа изображений
Технология искусственного интеллекта с каждым годом все лучше анализирует изображения, и функция «компьютерного зрения» — следующий шаг этой эволюции. С помощью такого интеллектуального решения пользователи могут отправлять изображения со своих смартфонов напрямую виртуальным ассистентам.
Современные чат-боты могут собирать важную информацию от клиентов колл-центра и делиться ею с сотрудниками. Главное — обучить умных ассистентов корректно распознавать намерения пользователей. В результате чат-боты с функцией «распознавания намерений» смогут расшифровать суть любого вопроса, как бы он ни был сформулирован.
Представим ситуацию: 75 потребителей из 123 удовлетворены сервисом. Вместо того чтобы надеяться на такой же позитивный результат с остальными 48 покупателями, компания может создать действенные методы работы, опираясь на результаты машинного обучения.
Машинное обучение и прогностическое моделирование выводят маршрутизацию обращений на новый уровень. Теперь при распределении звонков учитываются не только навыки и квалификация сотрудников, которые разделены по соответствующим группам. Система будет соединять абонентов со специалистами, основываясь на ряде факторов, среди которых, например, могут быть:
Представим ситуацию: покупатель использует инструмент чат-бота или IVR, чтобы ввести данные и получить страховое предложение, но затем покидает чат. Система автоматически отслеживает это действие и высылает пользователю уведомление, предлагая пообщаться с оператором. Если клиент соглашается на звонок, информация, собранная ранее чат-ботом или IVR, автоматически отправляется сотруднику контакт-центра. Имея эти данные, оператор сохранит драгоценное время и не будет задавать повторно одни и те же вопросы.
У абонентов всегда должна быть возможность прервать взаимодействие с автоматическими системами в удобный для них момент. Чтобы на любом этапе автоматической обработки контактов или использования инструментов самообслуживания потребители могли связаться с операторами. При этом сотрудники должны получать полную историю взаимодействия, чтобы клиентам не пришлось повторять одну и ту же информацию несколько раз.
Компания может внедрить машинное обучение, чтобы повысить рейтинг NPS. Например, система будет анализировать настроение абонентов, отслеживая различные контакты. На основе этого анализа она предоставит данные, с помощью которых можно прогнозировать вероятные модели поведения аудитории и результаты будущих взаимодействий. Опираясь на эти сведения, руководители смогут планировать упреждающие действия, чтобы улучшить качество обслуживания и повысить удовлетворенность клиентов.
Эта технология принесет пользу как клиентам, так и операторам. Первые получат более качественное обслуживание, общаясь со специалистами, которые их действительно понимают и могут предоставить наилучшую помощь. Операторы, в свою очередь, будут больше удовлетворены условиями работы, их производительность повысится естественным образом.
Машинное обучение
Наиболее частые представители искусственного интеллекта в бизнесе. По сути это программный код, который обрабатывает данные и имитирует работу человеческого мозга. Нейросети нашли широкое применение в дизайне, маркетинге, копирайтинге, работе с клиентами, статистике, расчётах, промышленности, банковском деле.
Это метод ИИ, позволяющий улучшить результат работы систем с помощью обучения на больших базах данных. Ключевое отличие машинного обучения от стандартных алгоритмов – адаптивность и постоянное развитие. Чем больше данных и информации соберет алгоритм, тем точнее будет его аналитика.
Например, NLP умеют с точностью до 95% распознавать по голосу три базовых типа эмоций – позитив, негатив и нейтралитет. Если верить прогнозам, то к 2025 году половина онлайн-рекламы будет основываться на этой технологии. Disney уже определяет, нравится ли зрителям контент, с помощью стриминговой платформы. А компания Ping An утверждает, что на 60% сократила финансовые потери при выдаче кредитов благодаря новым алгоритмам.
ИИ помогает компаниям находить и использовать новые бизнес-возможности. Например, системы анализируют данные о потребностях клиентов и предлагают новые продукты и услуги, которые будут пользоваться спросом. А нейросети позволяют создавать новые креативы и любые формы контента – видео, текст, коммерческие предложения, изображения для продвижения продуктов.
По крайней мере так было до недавнего времени. Сейчас ситуация постепенно меняется. Новые модели чат-ботов становятся более интеллектуальными благодаря встраиваемой функции «распознавания намерений». Она позволяет ботам лучше понимать, что говорят абоненты, и отвечать более подробно, точно.
Так же инструменты ИИ будут полезны для руководителей команд. Они могут автоматически отслеживать и обрабатывать кадровые данные, а затем составлять интеллектуальные решения по планированию. Руководители освобождаются от рутинного, утомительного сбора информации, могут продуктивно планировать загрузку подчиненных. Получив структурированные сведения, менеджеры могут понять, кто из работников должен уйти раньше, а кто готов взять дополнительные часы. Таким образом ИИ помогает создавать графики и смены, которые повышают вовлеченность, производительность персонала.