Из чего состоит искусственный интеллект

0
19

Это нейробаза

Основы теории: Что такое искусственный интеллект?

Когда про градиент говорят «разлетелся», имеют в виду, что значения градиента в процессе обучения модели стали слишком большими и выходят за пределы оптимальных. Это приводит к проблемам в обучении — модель может пропускать важные детали или давать неверные ответы.

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Глубокое, или глубинное, обучение (от англ. deep learning) — это подход к машинному обучению, использующий многократное применение нейронных сетей с большим количеством слоев для решения сложных задач, таких как распознавание речи или обработка изображений.

Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.

Например, сверточные нейронные сети (Convolutional Neural Networks, CNN) широко используются для обработки изображений и видео. Это особый класс многослойных нейросетей, способных извлекать из изображений характерные признаки, уменьшать эти данные в размере (это и называется сверткой) и благодаря этому эффективно распознавать объекты и обрабатывать большие объемы данных. Такие нейросети могут, например, находить на видео целующихся людей и помогать ученым восстанавливать позы животных.

Модели машинного обучения (от англ. machine learning model) — это методы, позволяющие компьютерам обучаться на большом количестве данных и благодаря этому делать прогнозы или принимать решения. ML-модели можно использовать, например, для сортировки результатов веб-поиска, прогнозирования цен на недвижимость или определения настроения текста. Для решения более сложных задач, таких как обработка изображений или распознавание речи, они используются в сочетании с нейронными сетями. Модели машинного обучения — важный инструмент для создания систем искусственного интеллекта, которые в том числе применяются в науке (об этом ниже).

Что такое обработка естественного языка?

По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.

Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .

Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .

Нейронные сети — на данный момент, вероятно, основной инструмент в сфере искусственного интеллекта. Как и человеческий мозг, нейронные сети состоят из узлов (нейронов), которые обрабатывают информацию и обмениваются ею друг с другом. В зависимости от задачи разработчики применяют различные архитектуры нейронных сетей.

Базисные модели — это модели машинного обучения, которые используются для решения простых задач, таких как классификация и регрессия. Они могут быть использованы в комбинации с более сложными моделями для улучшения их точности и эффективности.

Не нужно обладать особыми знаниями, чтобы увидеть, как технологии искусственного интеллекта меняют мир. Генеративные нейросети уже помогают дизайнерам (подробнее об этом читайте в материале «Совместный сновидческий процесс»), с помощью языковых моделей, например GPT-4, редактируют тексты и даже создают несложные приложения, а компьютерное зрение и другие алгоритмы обеспечивают движение беспилотных автомобилей. Тем не менее технологии искусственного интеллекта нуждаются в совершенствовании. Этим занимаются не только разработчики, но и исследователи, которые решают проблемы, возникающие на этапах разработки или внедрения технологии.

ЧИТАТЬ ТАКЖЕ:  Что значит нейросеть

Стандарты и искусственный интеллект

Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .

Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.

  • Обработка естественного языка (Natural Language Processing, NLP) — группа задач, в которых алгоритмы и модели используются для анализа и понимания естественного языка (то есть языка, на котором люди общаются друг с другом). Сюда относятся, например, технологии автоматического перевода, распознавания речи и анализа тональности текста.

Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.

Еще одна важная задача в биологии — работа с последовательностями ДНК. И если ученым уже вполне доступны языковые модели для последовательностей белков, то для ДНК долгое время в открытом доступе существовала только одна такая разработка, принадлежащая коллективу из США, — модель DNABERT. Исследователи AIRI использовали методы обработки естественного языка, чтобы разработать нейросетевую модель GENA_LM, обученную на самой полной на сегодняшний день сборке генома человека — T2T-CHM13. Проверяя эффективность модели для разных геномных задач, они поняли, что иногда для достижения наилучших результатов требуется увеличивать размер

. Трансформеры используют так называемые слои внимания (от англ. attention layers), позволяющие модели машинного обучения выделять нужное из истории обработки данных и учитывать их в дальнейшем. Именно трансформеры обеспечили прорыв в области автоматической обработки языка и сделали возможным, например, появление GPT-4.

Искусственный интеллект (ИИ, англ. artificial intelligence, AI ) — свойство искусственных вычислительно-интеллектуальных систем выполнять задачи, традиционно считающиеся прерогативой человека, в первую очередь творческого характера, а также наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. Не следует путать искусственный интеллект с искусственным сознанием. Искусственные интеллекты, существующие на настоящий момент — весьма узкоспециализированные и чаще всего некомпетентны за пределами своей основной задачи.

Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь