Содержание статьи
Эволюция искусственного интеллекта, и что нас ждет в 2034 году
Ренессанс искусственного интеллекта
Искусственный интеллект (ИИ), базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад. Но за короткое время он успел стать технологией, оказывающей заметное влияние на развитие экономики и формирование новых рынков.
Российская законодательная база по регулированию ИИ пока находится на этапе «взросления». Однако уже сегодня в стране сформировалось активное сообщество организаций частного и госсектора, которое в том числе сфокусировано на разработке концепций правового и саморегулирования в этой области. Еще в 2019 году был создан единый орган для развития ИИ в стране – Альянс в сфере искусственного интеллекта. А спустя два года его участники, ведущие отечественные компании, приняли Кодекс, который устанавливает принципы взаимодействия с технологией. В ближайшие годы вопросам специального регулирования этой сферы будет уделяться все больше внимания как на локальном, так и на международном уровнях.
Точное определение AGI еще не сложилось, но большинство экспертов определяет его, как ИИ, который соответствует или превосходит человеческие возможности в широком спектре когнитивных задач. Именно это, по мнению директора управления экспериментальных систем машинного обучения SberDevices Сергея Маркова, отличает AGI от существующих сегодня нейросетевых моделей. «Пчела найдет оптимальный маршрут в улей быстрее и лучше, чем это сделал бы человек, хотя в ее нервной системе несколько сотен тысяч нейронов, а у человека восемьдесят шесть миллиардов. Шахматная программа или даже калькулятор в решении конкретной задачи тоже превосходит человека. Уже сегодня можем сейчас взять почти любую простою задачу и сделать систему, которая будет лучше человека в ее решении. А вот AGI или общий искусственный интеллект — это универсальная система, которая сможет решать неизвестные ей ранее задачи. Сила человеческого интеллекта именно в том, что мы умеем решать задачи, с которыми ранее не сталкивались. И к созданию таких систем мы сейчас только приближаемся» , — отметил Марков в своем выступлении на конференции Turbo ML Conf.
Есть мнение, что сегодня мы стоим на пороге создания сильного искусственного интеллекта (AGI), способного мыслить и действовать как обычный человек. AGI – гипотетические системы, которые будут обладать такой же универсальностью, как и наш мозг, и смогут решать неограниченное количество интеллектуальных задач. Таких решений пока не существует, но работа в этом направлении уже идет. С тем, что AGI станет доступен к концу XXI столетия, согласны большинство экспертов. А по самым оптимистичным оценкам, технология может появиться уже в 2032 году. Если мы не будем сбавлять темпы, то, на мой взгляд, прогноз может оказаться вполне реальным.
Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году в 57%, к 2100 году в 88%.
Однако последние 15 лет мы наблюдаем новую волну интереса к исследованиям в области ИИ. Он начинает активно развиваться и приносить пользу людям, появляются примеры коммерческого применения. Многие задачи, над которыми человечество десятилетиями «ломало» голову, оказались решены за довольно короткий промежуток времени – благодаря искусственному интеллекту.
Искусственный интеллект, базирующийся на больших языковых моделях (Large Language Model) и машинном обучении, в публичном поле появился всего два с половиной года назад, но за короткое время успел стать сквозной технологией, оказывающей огромное влияние на развитие экономики и формирование новых рынков.
К началу 2024 года появилось уже несколько продвинутых генеративных языковых моделей, в том числе самая передовая на сегодня GPT-4 и ее ближайший конкурент Gemini Ultra от Google. Они очень быстро нашли применение в бизнесе и повседневной жизни. Так, всего за пару месяцев 2023-го активными пользователями ChatGPT стали 100 млн человек – исторический рекорд. Сегодня аналитики оценивают их число в 180 млн. На рынке появляется все больше решений, скорость их разработки растет в геометрической прогрессии. Возможно, пока вы читаете этот текст, появилась новая, более совершенная модель.
ИИ становится генеративным и этичным
На мой взгляд, у этих изменений несколько причин. Во-первых, с развитием интернета и промышленной автоматизации открылся доступ к большим массивам данных. Вместе с тем вычислительная мощность достигла уровня, необходимого для обработки целых «озер данных». И, наконец, появились усовершенствованные модели машинного обучения. База для обучения уже была – спасибо big data.
Какое-то время преобладали простые модели, которые отлично справлялись с аналитическими задачами. С 2015 появляются новые решения – более совершенные, дешевые и доступные. Начинается гонка за масштабированием. В результате появляются новые архитектуры, которые позволяют языковым моделям эффективнее работать с графическими и текстовыми данными. Развиваются большие языковые модели (LLM) и улучшается обработка естественного языка, в том числе машинный перевод и языковое моделирование. Эксперты допускают, что именно этот тип архитектуры может стать ведущим в дальнейшем развитии ИИ.
Середина 2010-х стала точкой перелома, после которой стремительно начало развиваться глубокое обучение. Оно позволяет создавать новые типы приложений для работы с огромными объемами информации. Тогда же начали развиваться вариационные автоэнкодеры (Variational Autoencoder, VAE). Это генеративные модели, которые состоят из двух частей: одна анализирует любые данные, другая выдает на их основе похожий уникальный результат. Например, с помощью VAE можно написать музыку или создать изображение.
С этого момента мы видим значительный скачок в масштабе и возможностях LLM. Постоянно появляются новые модели, более эффективные и функциональные. Они помогают в самых разных сферах – от генерации изображений до написания кода. Здесь начинается история знакомого всем ChatGPT: в гонку включается его разработчик и выпускает несколько генеративных моделей – предшественников чат-бота GPT.
И это только некоторые достижения в области ИИ – наиболее яркие и революционные. Как мы видим, предыдущие 10 лет были очень динамичными и насыщенными для искусственного интеллекта – отрасль «вышла из спячки». От локального исследования потенциала глубокого обучения мы максимально приблизились к повсеместному применению технологии вплоть до бытового уровня.
По важности и влиянию на человечество его сравнивают с появлением интернета и смартфонов. Речь об искусственном интеллекте, ставшем одной из главных тем 2024 года. Хотя новую волну популярности технологии мы переживаем уже несколько лет, прорыв увидели совсем недавно. Пока ИИ стремительно развивается и проникает во все сферы, люди все чаще задумываются об этических вопросах и делятся опасениями насчет его бесконтрольного использования. Как мы оказались в этой точке и что будет дальше?
Что будет дальше?
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства Российской Федерации Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб.
Среди потенциально интересных задач для генеративного искусственного интеллекта в духе нашего времени – генерация кода для отечественных продуктов: это ускорит миграцию на российские технологии и достижение цифрового суверенитета. Использование инструментов автоматического документирования на базе генеративного интеллекта позволит быстрее реализовывать проекты в ИТ, строительстве и науке. Следовательно, в ближайшие годы технология может повысить производительность труда и беспрецедентно изменить мировую экономику. Основным вызовом здесь станет формирование постоянно растущего спроса на новые товары и услуги и поиск рынков сбыта. Максимального результата достигнут компании, которые смогут открыть для себя эти возможности.
ИИ уже не является чем-то футуристичным и имеет шансы стать незаменимым помощником человека – как когда-то стали смартфоны. Сегодня он уже решает сложнейшие научные задачи, рекомендует вам товары на маркетплейсах, помогает искать вакансии, проводит кредитный скоринг
Однако на первый план все чаще выходят социальные и этические аспекты, а во всем мире призывают к скорейшему регулированию этой сферы. В обществе растет беспокойство по поводу быстрого развития технологии. Опасения разделяют и сами разработчики: в марте прошлого года лидеры отрасли призвали вдумчиво подходить к дальнейшей работе над ИИ. На прошедшем в январе 2024 года Всемирном экономическом форуме Сатья Наделла, генеральный директор Microsoft, призвал мир достичь консенсуса относительно вызовов, связанных с развитием искусственного интеллекта, а генсек ООН Антонио Гутерриш предостерег большой бизнес от безрассудства в погоне за растущей прибылью. Важно убедиться в положительных последствиях распространения ИИ и разработать общие стандарты безопасности.
Сегодня рынок искусственного интеллекта является самым быстрорастущим в мире. Согласно прогнозам исследовательской компании Statista, c 2024 по 2030 год мировой рынок ИИ будет расти со скоростью 28,46% в год. А по мнению заместителя председателя правительства РФ Дмитрия Чернышенко, экономический эффект от внедрения искусственного интеллекта увеличит ВВП России к 2030 году на 11 трлн руб. Главным вызовом для большинства исследователей и разработчиков ИИ стал вопрос создания AGI (Artificial general intelligence) — так называемого общего искусственного интеллекта. Точное определение AGI еще не сложилось, но большинство экспертов определяет его как ИИ, который соответствует или превосходит человеческие возможности в широком спектре когнитивных задач. Именно это, по мнению директора управления экспериментальных систем машинного обучения SberDevices Сергея Маркова, отличает AGI от существующих сегодня нейросетевых моделей. «Пчела найдет оптимальный маршрут в улей быстрее и лучше, чем это сделал бы человек, хотя в ее нервной системе несколько сотен тысяч нейронов, а у человека восемьдесят шесть миллиардов. Уже сегодня мы можем взять почти любую простую задачу и сделать систему, которая решит ее лучше человека. А вот AGI, или общий искусственный интеллект, — это универсальная система, которая сможет решать неизвестные ей ранее задачи. И к созданию таких систем мы сейчас только приближаемся», — отмечает Марков. Эксперты из института Epoch AI проанализировали все прогнозы профессиональных исследователей относительно того, когда человечество создаст AGI. Вероятность создания общего искусственного интеллекта к 2030 году оценивается ими в среднем в 25%, к 2050 году — в 57%, к 2100 году — в 88%. При этом руководитель научных исследований обработки естественного языка в лаборатории T-Bank AI Research Даниил Гаврилов считает, что общий ИИ может появиться раньше. Он отмечает, что и аналитики, и разработчики, делая прогноз в 2021 году о качестве нейросетевых моделей к 2022 году, ошиблись более чем в два раза в меньшую сторону. «Нам очень тяжело думать об экспоненциальном росте, а именно так сейчас развиваются большие языковые модели. Такая скорость тяжело укладывается в голове, поэтому те предсказания, которые мы слышали, оказались более пессимистичны, чем реальность. Если экстраполировать текущую скорость развития ИИ, то уже к 2027 году мы получим если не полноценный AGI, то что-то качественно иное относительно того, что мы имеем сейчас», — считает Гаврилов. Согласно данным Epoch AI, сегодня существуют несколько разнонаправленных трендов, которые будут влиять на скорость развития ИИ в ближайшие годы. Так, производительность «железа», которое требуется для обучения и работы нейросетей, удваивается каждые 2-3 года. А переход на новые тензорные ядра в графических процессорах NVIDIA привел к одномоментному 10-кратному росту производительности. Среди негативных факторов, тормозящих развитие ИИ, эксперты Epoch AI выделяют дефицит данных для обучения ИИ. Согласно их прогнозам языковые модели полностью израсходуют запас публичных данных, размещенных в интернете, между 2025 и 2032 годами. Для дальнейшего обучения нейросетевых моделей потребуется использовать синтетические данные, то есть сгенерированные ИИ. Таким образом, искусственный интеллект начнет обучать себя сам. А вот к каким последствиям это приведет, сегодня не может предсказать ни один эксперт.
Всего 10 лет назад технологии едва справлялись с распознаванием текста и изображений. Сегодня они берут на себя сложные аналитические и творческие функции и применяются в самых разных сферах. В медицине ИИ может быть полезен для создания лекарств, постановки диагноза, регистрации данных, консультирования. В сельском хозяйстве – для точного расчета доз удобрений и прогнозирования погоды. В аэрокосмической отрасли он помогает управлять полетами и моделировать корабли.
Последние 10 лет человечество работало над системами прикладного ИИ, постоянно увеличивая количество параметров и создавая все новые модели. Но эпоха «больше – лучше» подходит к концу. Думаю, что теперь внимание разработчиков будет сосредоточено на увеличении возможностей моделей и вопросах безопасности. Важно не только продвигаться вперед, но и обеспечить соответствие новых инструментов интересам общества.
При этом руководитель научных исследований обработки естественного языка в лаборатории T-Bank AI Research Даниил Гаврилов считает, что общий ИИ появится раньше. Он отметил, что и аналитики, и разработчики, делая прогноз в 2021 году относительно качества нейросетевых моделей к 2022 году, ошиблись более чем в два раза, причем, в меньшую сторону. «Нам очень тяжело думать об экспоненциальном росте, а именно так сейчас развиваются большие языковые модели. Такая скорость тяжело укладывается в голове, поэтому те предсказания, которые мы слышали оказались более пессимистичны, чем реальность. Если экстраполировать текущую скорость развития ИИ, то уже к 2027 году мы получим, если не полноценный AGI, то что-то качественно иное относительно того, что мы имеем сейчас», — считает Гаврилов. Согласно данным Epoch AI, сегодня существуют несколько разнонаправленных трендов, которые будут влиять на скорость развития ИИ в ближайшие годы. Так производительность «железа», которое требуется обучения и работы нейросетей, удваивается каждые 2,3 года. А переход на новые (FP16) тензорные ядра в графических процессорах NVIDIA привел к одномоментному 10-кратному росту производительности. Объем вычислений, используемых для обучения нейросетевых моделей, с 2010 по 2024 ежегодно увеличивался в 4-5 раз. Такой рост наблюдается в новых больших языковых моделях (LLM) всех ведущих компаний. Алгоритмический прогресс в производительности LLM происходит со скоростью эквивалентной удвоению вычислительной мощности каждые 5-14 месяцев. То есть ИИ-алгоритмы становятся более совершенными и производительными. Среди негативных факторов, тормозящих развитие ИИ, эксперты Epoch AI отметили рост стоимость LLM. За последние восемь лет стоимость обучения новейших ИИ-моделей росла в 2-3 раза в год, а к 2027 году стоимость крупных LLM превысит миллиард долларов. Также сдерживающим фактором является дефицит данных для обучения искусственного интеллекта. Запас публичных текстов, созданных человечеством, оценивается примерно в 300 триллионов токенов. Если актуальные тенденции сохранятся, то языковые модели полностью используют этот запас между 2025 и 2032 годами (под токенами подразумевается последовательность текстовых символов — слов или отдельных знаков — ред.). В дальнейшем для дальнейшего обучения нейросетевых моделей потребуется использовать синтетические данные, то есть сгенерированные ИИ. Таким образом искусственный интеллект начнет обучать себя сам, но как это отразится на качестве и характере обучения пока неизвестно. В любом случае аналитики считают, что 2027-2030 года станут рубежом, когда станет ясно, насколько человечество приблизилось к созданию общего искусственного интеллекта. Среди экспертного сообщества нет сомнений, что создание AGI вызовет мощные технологические, экономические и социальные изменения в обществе.