Содержание статьи
Искусственный интеллект: что это такое и как работает
ИИ в искусстве
Следующий вызов — безопасность. Применение ИИ в критически важных областях, таких как транспорт или медицина, требует исключительной надежности и точности. Ошибки в работе могут иметь катастрофические последствия. Поэтому важно обеспечить максимально возможную безопасность и защиту систем на основе ИИ от внешних угроз.
Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.
Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.
ИИ анализирует генетическую информацию пациентов, чтобы предложить индивидуализированные лечебные планы. Это особенно важно в онкологии, где лечение может быть адаптировано под конкретные генетические мутации опухоли. ИИ-помощники обеспечивают первичную медицинскую консультацию, анализируя симптомы и предоставляя рекомендации о необходимости обращения к специалисту.
С тех пор научные исследования в области ИИ расширялись. В них включили изучение психологии памяти и механизмов понимания для их имитации на компьютере. К середине 1970-х появились методы семантического представления знаний, а также экспертные системы, которые использовали знания специалистов для моделирования мыслительных процессов. В следующие десятилетия популярность ИИ выросла. Появились алгоритмы машинного обучения, которые помогают компьютерам накапливать знания и самостоятельно обучаться на основе проб и ошибок. С 2010 года увеличившаяся мощность компьютеров позволила сочетать большие данные с методами глубокого обучения на основе нейросетей. Активнее начали развиваться распознавание речи и изображений, понимание естественного языка, автономное вождение автомобилей.
Искусственный интеллект, Artificial Intelligence или AI — это раздел компьютерных наук, занимающийся созданием машин или программ, которые могут думать и учиться, имитируя человеческий разум. Разбираемся, как работает технология, какие изменения она привносит в нашу реальность и где активно используется.
Основы теории: Что такое искусственный интеллект?
Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.
Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.
Умные колонки используют технологии распознавания речи и естественного языка для понимания и обработки запросов пользователя. При помощи голосового помощника мы управляем различными умными устройствами в доме: освещением, бытовой техникой, телевизором и системой безопасности.
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).
Давайте разберем на всем знакомом примере ChatGPT. Сначала ИИ обучали на огромном массиве текстовых данных из интернета: веб-сайтах, электронных книгах, словарях и энциклопедиях вроде «Википедии». Модель изучила языковые закономерности, структуру предложений, грамматику, собрала базу знаний.
Например, мы просим нейросеть написать текст про устройство космического корабля. Она выдает результат. Затем мы даем команду: «Нужно обязательно добавить информацию из книги N, сократить текст до пяти абзацев и сделать так, чтобы каждое предложение начиналось с новой буквы алфавита». ChatGPT возьмет за основу уже созданный текст и переработает его с учетом поставленной задачи.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.