Содержание статьи
4 причины, почему искусственный интеллект нужен даже гуманитариям, и ответы на самые стыдные вопросы о технологии будущего
Простор для творчества
«Искусственный интеллект забирает у людей работу!» Отчасти это так. Причём в довольно неожиданных отраслях. Провинциальная бейсбольная команда «Окленд» смогла выстоять против фаворитов чемпионата и выиграть 20 матчей подряд благодаря алгоритму подбора и расстановки игроков на поле. Хотим мы того или нет, но активно автоматизируются даже те процессы, от которых этого совсем не ждёшь. Вопрос лишь в том, кто сможет адаптироваться к изменениям и освоить актуальные навыки работы с данными, а кого ИИ таки сбросит с корабля современности.
Раньше, чтобы создать алгоритм, программисты придумывали и прописывали правила формата «если… то…». Их было очень много. И всё равно алгоритм не знал, как вести себя за пределами заданных ему заранее условий. Сегодня же всё работает по технологии машинного обучения.
Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.
Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
Глубокое обучение — это разновидность машинного обучения. Тем не менее, глубокое обучение может анализировать больше типов информации и выполнять более сложные операции. Процесс глубокого обучения вдохновлен структурой и функциями человеческого мозга — в частности, тем, как нейроны связаны между собой и работают вместе для обработки информации. Благодаря этому, глубокое обучение позволяет делать более тонкие и глубокие прогнозы на основе предоставленных данных.
Что такое машинное обучение?
Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).
Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.
По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.
Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.
По своей сути машинное обучение — это способность компьютерной системы обучаться на основе данных, не будучи явно запрограммированной. Одним из примеров является фильтрация спама в электронной почте. Обнаруживая схожие закономерности в спам-сообщениях, почтовые платформы могут узнать, какие письма полезны, а какие следует держать подальше от папки «Входящие».
Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.
Консалтинговое агентство KPMG называет данные валютой будущего. Но что не так с золотом, долларами, рублём? Дело в том, что с 1997 по 2002 год человечество сгенерировало больше информации, чем за всё время до этого. С каждым годом люди производят на 30% больше данных, чем в предыдущем. И чтобы справляться с таким потоком информации, разбираться в программировании и анализе данных сегодня должны уже не только «технари». Журналисты, врачи, социологи, психологи, маркетологи, которые могут автоматизировать свою работу, экономят время и силы, успевают выполнить больше задач и, как следствие, получают более высокие зарплаты.