Что умеют нейросети пример

0
15

Подобрать фильм, написать текст, сгенерировать изображение: что умеют нейросети

Может ли нейросеть заменить человека

В настоящее время многие пользователи — как обладатели домашних компьютеров, так и разработчики программного обеспечения, администраторы серверных систем и прочие представители корпоративного сектора — всё больше используют операционные системы, основанные на ядре Linux либо задумываются о переходе на эти системы. Причин тому достаточно: такие особенности, как отличная производительность, возможность тонкой настройки, защищенность данных, бесплатность многих продуктов и недавно проявившаяся политическая составляющая делают эту ОС хорошим выбором для использования в самых разнообразных компьютерных системах. Одна из отличительных особенностей Linux — поддержка «из коробки» разнообразных файловых систем, в том числе традиционных и специализированных. Её ядро содержит набор заранее предустановленных файловых систем, каждая из которых предлагает свои функции для организации, хранения и управления данными и регулирует доступ к ним исходя из предъявляемых требований безопасности. Для любого дискового раздела можно выбрать свою систему, ориентируясь на приоритетные потребности пользователя — такие, как быстродействие, гарантированная сохранность информации, повышенная производительность.

Это чат-бот от компании Open AI, разработанный на базе языковой модели GPT-3,5. Нейросеть может вести диалог, рассказывать анекдоты и писать тексты. Модель прошла обучение с подкреплением, получала фидбэк от людей и совершенствовала свои алгоритмы. Этот чат-бот можно использовать вместо поиска, для написания простого кода и поточных текстов, например, карточек товаров для интернет-магазина.

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел. Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.

Если присмотреться к меню вкладок браузера, то можно заметить крошечные изображения-логотипы. Благодаря им понятно, какой именно ресурс находится на определенной вкладке. Это удобный инструмент для быстрой ориентации среди массы веб-площадок. А если создать фавикон для сайта, владельцем которого являетесь вы, то это повысит узнаваемость интернет-проекта. Он попадет в разряд быстро находимых, более кликабельных.

Автор книги «Before the Brand: Creating the Unique DNA of an Enduring Brand Identity» Алисия Перри подсчитала, что 98% английского словаря состоит из названий брендов. Придумать оригинальное название для бизнеса, которое понравится пользователям, непросто. А после этого еще нужно выбрать цвета, логотип и придумать фирменный стиль. Принять решения и поставить задачу дизайнерам предпринимателю поможет искусственный интеллект.

Нейронные сети используются для решения сложных задач, которые требуют большого объема данных и высокой точности. Они могут быть использованы для распознавания образов, анализа текстовых данных или прогнозирования поведения рынка, а также могут применяться для создания новых продуктов и услуг, таких как персональные помощники или системы автоматического управления транспортом.

Нейросети пока не могут написать большой и связный текст без помощи человека. Тем не менее они помогут начать статью или рассылку, сформулировать мысль или идею. Сервисы могут быть полезны для копирайтеров, менеджеров и всех, кому приходится или хочется писать.

Как работает нейросеть?

Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети. Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее. Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож. Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются. В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его. Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая читает текст с картинки

Инструмент создал разработчик из Google Дэн Мотценбекер на проекте AI Experiments от Google Creative Lab. Нейросеть работает на базе платформы Google Cloud Vision API и переводчика Translate API. Эти технологии позволяют с высокой точностью распознавать объекты на картинках и выдавать машинный перевод. Нейросеть считывает форму предмета, ищет совпадения, распознаеёт вещь и переводит название на выбранный язык. Сервис знает немецкий, французский, испанский, итальянский, китайский, японский, корейский, датский языки и хинди. Иногда инструмент ошибается, но, как и любая технология машинного обучения, учится на своих ошибках и совершенствуется с каждым запросом.

Объемы отечественного рынка e-commerce значительно выросли с 2022 года. На этом поприще успешно продвигают свой бизнес как частники, так и большие магазины федерального значения. Этому благоприятствовал уход с российского рынка иностранных брендов. Освободившиеся ниши дали дополнительной толчок для развития интернет-бизнеса тем, кто не особо надеялся пробиться сквозь строй опытных иностранных конкурентов. Учитывая изменения на рынке онлайн-торговли, многие начинающие бизнесмены стали задумываться, на какой платформе создавать интернет-магазин, как подобрать хороший вариант. Предлагаем над этой темой поразмышлять вместе.

Существуют различные типы нейронных сетей, такие как сверточные (CNN), рекуррентные (RNN), трансформеры и ряд других. Сверточные нейросети находят применение для обработки изображений и видео, рекуррентные — используются для анализа последовательностей данных, таких как тексты или временные ряды, а трансформеры предназначены в основном для обработки естественных языков и последовательностей данных.

Нейросети — математические модели и их программное воплощение, основанные на строении человеческой нервной системы. Самую простую нейронную сеть, перцептрон (модель восприятия информации мозгом), вы сможете легко самостоятельно написать и запустить на своем компьютере, не используя сторонние мощности и дополнительные устройства. Пройдите наш тест и узнайте, какой контент подготовил искусственный интеллект, а какой — реальный человек. Чтобы лучше понять, что это такое, попробуем сначала разобраться, как работают биологические нейронные сети — те, что находятся внутри нашего организма. Именно они стали прообразом для машинных нейронных сетей.

Нейросети состоят из «нейронов» (простых процессоров). Когда нейросеть обрабатывает какую-то информацию, сигналы проходят через нейроны и связи между ними. По мере обучения эти связи меняются, становятся более сильными или слабыми, что позволяет сети находить нужные решения.

В эпоху стремительного развития технологий нейросети занимают особое место, переворачивая представления о возможностях искусственного интеллекта. Взглянем на то, как работают эти удивительные системы и какие невероятные задачи они способны решить. Погружаемся в мир нейросетей и их потенциала!

Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе. В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом. Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей. Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку. Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат. Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет». После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.

То есть нейронная сеть может заменить человека?

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

Алгоритмы социальных сетей уже неплохо справляются с тем, чтобы показывать нам контент, который точно нам понравится. Аналогичные инструменты есть для выбора развлечений и занятий на выходные. Вместо того чтобы ссориться о том, какой фильм смотреть в пятницу вечером, доверьте выбор нейросети.

ruDALL-E — русская версия нейросети DALL-E от Сбера. DALL-E — одна из версий модели GPT-3, обученная генерировать изображения из текста. Первый компонент нейросети (CLIP) переводит текст в цифровую среду и создает набросок изображения. CLIP тренировали на датасете из 600 миллионов картинок с подписями. Второй компонент GLIDE детализирует изображение. На финальном этапе алгоритм доводит картинку до максимально возможного уровня качества. DALL-E активно используют в коммерческих целях. Например, журнал Cosmopolitan поместил на обложку изображение, сгенерированное нейросетью.

Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.

Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.

Вместо того, чтобы бояться замены, человечеству стоит продолжать пользоваться нейросетями как инструментами для развития и улучшения своих способностей. Взаимодействие человека и нейросетей в конечном итоге несомненно приведёт к синергии, которая откроет людям новые возможности и позволит улучшить качество их жизни.

Stable Diffusion — инструмент от группы Stability.Ai. Нейросеть создает картинку по словесному описанию. Она использует в работе кодировщик текста, который описывает каждое слово с помощью списка чисел или вектора. Генератор изображения обрабатывает эти данные и преобразует в пиксельную картинку. Нейросеть уже используют для создания контента — в телеграм-канале АктаНейро можно посмотреть, как Stable Diffusion генерирует изображения к новостям.

Нейросети научились создавать впечатляющие иллюстрации, имитировать картины известных мастеров и фотореалистичную графику. Изображения можно добавлять в презентации, посты в соцсетях или использовать для вдохновения. Выгоревшие дизайнеры, иллюстраторы и SMM-специалисты оценят этот инструмент.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь