Что такое роевой интеллект в искусственном интеллекте

0
17

Роевой интеллект и его наиболее распространённые методы реализации

3D-моделирование фракталов. Фрактальные антенны

Искусственная колония использует алгоритм схожий с добычей нектара медоносными пчелами. Вместо поля с цветами рассмотрим область решений. Вместо нектара используем критерии задачи оптимизации, целевую функцию. На каждой итерации алгоритма выбирается nb областей с лучшим значением целевой функции, они называются “лучшие”, из оставшихся выбирается еще ng лучших, называемых “перспективными”. Можно задать определенное минимальное расстояние между двумя соседними областями. В этом случае, при возникновении наложения, область с худшим значением целевой функции отсекается. Вместо нее выбирается другая область. Данные области запоминаются и при следующей итерации в них посылается определенное количество пчел.

Стоит так же отметить, что непосредственно такой термин как “Роевой интеллект” был введён Ван Цзином и Херардо Бени в 1989 году. Так же модель подразумевает наличие так называемой “многоагентная система”, которая определяется как система, состоящая из множества интеллектуальных агентов — программ, способных самостоятельно на протяжении некого, достаточно длительного промежутка времени, выполнять поставленную задачу.

Искусственная иммунная система: такая вычислительная система, которая способна адаптироваться и использовать схожие с реальной иммунной системой принципы и механики. У данного метода есть три основные теории, которые описывают его функционирование и взаимодействие между элементами:

Алгоритм искусственной пчелиной колонии (далее, пчелиный алгоритм) ‒ алгоритм роевого интеллекта, основан на имитации поведения колонии пчел, может использоваться в задачах оптимизации. Необходимым условием для его применения является наличие некоторого топологического расстояния ли его аналога на области решений.

Данный метод является методом численной оптимизации, поддерживающий общее количество возможных решений, которые называются частицами или агентами, и перемещая их в пространстве к наилучшему найденному в этом пространстве решению, всё время находящемуся в изменении из-за нахождения агентами более выгодных решений.

Ещё давным-давно люди стали интересоваться так называемым “роевым поведением” — каким образом птицы летят на юг огромными косяками, не сбиваясь с курса. Как огромные колонии муравьёв работают так слаженно и возводят структуры, по сложности не уступающие современным мегаполисам. Как пчёлы могут так точно определять и добывать в необходимом для всей колонии питание. Все эти большие группы животных/насекомых можно объединить одним общим словом — рой. Благо, человечество не стоит на месте и, развиваясь, люди стали изобретать компьютеры, при помощи которых инженеры стали моделировать “роевой интеллект” (РИ) — попытки сделать роботизированные, автоматические и автоматизированные рои. Хоть далеко не все попытки были успешными, но, тем не менее, они положили начало созданию РИ, заложив к его основанию некоторые фундаментальные правила. Одним из них является тот факт, что для роевого интеллекта необходимо большое (достаточно) количество агентов, способных взаимодействовать между собой и окружающей их средой локально. Наблюдая за различными естественными примерами роёв, человечество придумало различные модели РИ, чьё поведение основывалось на различных путях взаимодействия с окружающей средой и между собой.

В данном алгоритме используется несколько параметров: количество разведчиков, количество лучших и перспективных, радиус локальной разведки, количество пчел для каждого класса области, минимально возможное расстояние между соседними областями. Качество получаемых решений значительно зависит от выбора данных параметров. Кроме того, от этого выбора зависит и скорость работы алгоритма.

Суть алгоритма заключается в применении модели функционирования колонии муравьев к решению различных задач. В этом алгоритме муравьиная колония рассматривается как мультиагентная система, в которой все агенты действуют самостоятельно по очень простым алгоритмам, но вся система в целом ведет себя крайне разумно. Поведение колонии муравьев основывается на самоорганизации, достигаемой за счет взаимодействия агентов на низком уровне ради общей цели. Особи могут взаимодействовать как с помощью прямого обмена информацией (химический, визуальный контакт), так и с помощью непрямого обмена (стигмержи). Он заключается в том, что некий агент может изменять область пространства с помощью некоторого вещества (феромона), после чего другие агенты могут использовать эту информацию для определения собственного маршрута. В результате концентрация феромонов на маршруте определяет приоритет его выбора. Кроме того, «феромон» может испаряться, что создает динамичность алгоритму.

ЧИТАТЬ ТАКЖЕ:  Что из перечисленного не относится к характеристикам работы искусственного интеллекта

Применение ИКТ в геометрических и физических приложениях определённого интеграла

Первым, кто сумел применить поведение муравьев для решения задачи о кратчайших путях, стал Марко Дориго в начале 90-х годов XX века. Позже также были решены многие оптимизационные задачи при помощи муравьиных алгоритмов. В настоящее время эти алгоритмы показывают лучшие результаты в некоторых задачах.

Концепция алгоритма заключается в способности муравьев находить кратчайший путь крайне быстро и адаптироваться к различным внешним условиям. При движении каждый муравей помечает свой путь феромоном, что в дальнейшем используется другими муравьями. Это и есть простой алгоритм одного агента, который в сумме всех агентов колонии позволяет находить кратчайший путь или изменять его при обнаружении препятствия. Данную концепцию можно увидеть на рис.4.

Изначально этот алгоритм применялся для исследований социального психолога, Кеннеди, но самое большое распространение этот алгоритм смог получить при решениях задач оптимизации различных нелинейно-многомерных уравнениях. Этот алгоритм в современном мире применяется в машинном обучении, для решений задач оптимизации и в различных точных и экспериментальных науках, таких как биоинженерия и т. д.

Как видно на рис.2, алгоритм роя частиц — итеративный процесс, постоянно находящийся в изменении. Для того, чтобы понять, как функционирует алгоритм МРЧ, можно рассмотреть область поиска в виде многомерного пространства с агентами нашего алгоритма. Изначально все агенты находятся в случайных местах пространства и со случайным вектором скорости. В каждой из точек, которую частица посещает, она рассчитывает заданную функцию и фиксирует наилучшее значение искомой функции. Так же все частицы знают местоположение наилучшего результата поиска во всём рое и с каждой итерацией агенты корректируют вектора своих скоростей и их направления, стараясь приблизиться к наилучшей точке роя и при этом быть поближе к своему индивидуальному максимуму. При этом постоянно происходит расчёт искомой функции и поиск наилучшего значения. На рис. 3 приведен пример работы МРЧ.

В данной работе были рассмотрены основные используемые алгоритмы роевого интеллекта: метод роя частиц, муравьиный алгоритм, алгоритм искусственной пчелиной колонии. Был проведен их сравнительный анализ, в результате которого были выявлены основные сильные стороны методов, области применения а также перспективы развития каждого из трёх рассматриваемых. А так же кратко рассмотрены истории создания данных методов. Хотелось бы отметить, что все перечисленные в данной статье алгоритмы актуальны на сегодняшний день и несут в себе множество перспектив в развитии.

Вданной статье мы хотели бы описать роевой интеллект и его различные методы. Задачей анализа всевозможных методов роевого интеллекта является сравнение трёх его наиболее популярных способов реализации. Особый акцент сделан на муравьином, пчелином алгоритмах и методе роя частиц. Рассмотрены их особенности, сферы применения и математический аппарат, их реализующий. Кроме того, приведено краткое описание некоторых иных, менее популярных, алгоритмов роевого интеллекта. На основании полученных данных в конце делается вывод о преимуществах перед другими способами реализации, даётся краткое заключение о перспективах развития, а также подведён некий итог разнообразным методам роевого интеллекта.

Ключевые слова: искусственный интеллект, artificial intelligence, роевой интеллект, swarm intelligence, метод роя частиц, particle swarm optimization, муравьиный алгоритм, ant colony optimization, метод пчелиного улья, artificial bee colony optimization

Для сбора нектара в пчелиной колонии применяется два вида пчел: пчелы-разведчики и пчелы-рабочие. Первые проводят исследование территории, окружающей улей, на предмет наличия нектара. По возвращении в улей, пчелы-разведчики сообщают информацию о количестве нектара, направлении его расположения и расстоянии до него. Далее, в наиболее подходящие области вылетают рабочие, причем, чем больше нектара в данной области, тем больше пчел вылетает в нее. Кроме сбора меда, в их задачу входит обновление информации о данной и близлежащих областях.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь